Câu hỏi:

30/07/2025 9 Lưu

Hình vẽ mô phỏng phần bên trong của một chậu cây có dạng khối tròn xoay tạo thành khi quay một phần của đồ thị hàm số \[y = \sqrt x  + \frac{3}{2}\] với \[0 \le x \le 4\] quanh trục hoành. Thể tích phần bên trong (dung tích) của chậu cây, biết đơn vị trên các trục Ox, Oy là decimet
Hình vẽ mô phỏng phần bên trong của một chậu cây có dạng khối tròn xoay tạo thành khi quay một phần của đồ thị hàm số (ảnh 1)

Trả lời: ………………..

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[V = \pi \int\limits_0^4 {{{\left( {\sqrt x  + \frac{3}{2}} \right)}^2}dx}  = 33\pi {\rm{ }}\left( {d{m^3}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cửa có hình dạng một parabol \((P)\) với phương trình \(y = a{x^2} + bx + c\).

Parabol \((P)\) có đỉnh \(I\left( {0;\frac{9}{4}} \right)\) nên \(c = \frac{9}{4}\), suy ra \((P):y = a{x^2} + bx + \frac{9}{4}\).

Vì parabol \((P)\) đi qua các điểm \(A\left( { - \frac{3}{2},0} \right),B\left( {\frac{3}{2};0} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{9}{4}a - \frac{3}{2}b =  - \frac{9}{4}}\\{\frac{9}{4}a + \frac{3}{2}b =  - \frac{9}{4}}\end{array}} \right.\), suy ra \(\left\{ {\begin{array}{*{20}{l}}{a =  - 1}\\{b = 0}\end{array}} \right.\)

Do đó \((P):y =  - {x^2} + \frac{9}{4}\).

Gọi \(S\left( {\;{{\rm{m}}^2}} \right)\) là diện tích kính cẩn lắp. Ta có \(S\) bằng diện tích hình phẳng \((H)\) giới hạn bởi parabol, trục hoành và các đường thẳng \(x =  - \frac{3}{2},x = \frac{3}{2}\).

\(S = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right)} {\rm{d}}x = \left. {\left( { - \frac{{{x^3}}}{3} + \frac{9}{4}x} \right)} \right|_{ - \frac{3}{2}}^{\frac{3}{2}} = \frac{9}{2}\left( {{m^2}} \right)\)

Vậy diện tích kính cản lắp là \(\frac{9}{2}{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP