Câu hỏi:

30/07/2025 12 Lưu

Hình vuông \(OABC\) có cạnh bằng \(4\) được chia thành hai phần bởi đường cong \(\left( C \right)\) có phương trình \(y = \frac{1}{4}\,{x^2}\). Gọi \({S_1}\,,\,\,{S_2}\) lần lượt là diện tích của phần không bị gạch và bị gạch như hình vẽ bên dưới. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng bao nhiêu?

Hình vuông (OABC) có cạnh bằng 4 được chia thành hai phần bởi  (ảnh 1)

Trả lời: ………………..

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\frac{{{S_1}}}{{{S_2}}} = 2\)

Ta có diện tích hình vuông \(OABC\) là \(16\) và bằng \({S_1}\, + \,{S_2}\).

\({S_2} = \,\,\int\limits_0^4 {\frac{1}{4}{x^2}{\rm{d}}x} \,\, = \,\left. {\,\frac{{{x^3}}}{{12}}} \right|_0^4\, = \,\,\frac{{16}}{3}\)\[\,\, \Rightarrow \,\,\,\,\frac{{{S_1}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - {S_2}}}{{{S_2}}}\,\,\, = \,\,\,\frac{{16 - \frac{{16}}{3}}}{{\frac{{16}}{3}}}\,\,\, = \,\,\,2\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cửa có hình dạng một parabol \((P)\) với phương trình \(y = a{x^2} + bx + c\).

Parabol \((P)\) có đỉnh \(I\left( {0;\frac{9}{4}} \right)\) nên \(c = \frac{9}{4}\), suy ra \((P):y = a{x^2} + bx + \frac{9}{4}\).

Vì parabol \((P)\) đi qua các điểm \(A\left( { - \frac{3}{2},0} \right),B\left( {\frac{3}{2};0} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{\frac{9}{4}a - \frac{3}{2}b =  - \frac{9}{4}}\\{\frac{9}{4}a + \frac{3}{2}b =  - \frac{9}{4}}\end{array}} \right.\), suy ra \(\left\{ {\begin{array}{*{20}{l}}{a =  - 1}\\{b = 0}\end{array}} \right.\)

Do đó \((P):y =  - {x^2} + \frac{9}{4}\).

Gọi \(S\left( {\;{{\rm{m}}^2}} \right)\) là diện tích kính cẩn lắp. Ta có \(S\) bằng diện tích hình phẳng \((H)\) giới hạn bởi parabol, trục hoành và các đường thẳng \(x =  - \frac{3}{2},x = \frac{3}{2}\).

\(S = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left( { - {x^2} + \frac{9}{4}} \right)} {\rm{d}}x = \left. {\left( { - \frac{{{x^3}}}{3} + \frac{9}{4}x} \right)} \right|_{ - \frac{3}{2}}^{\frac{3}{2}} = \frac{9}{2}\left( {{m^2}} \right)\)

Vậy diện tích kính cản lắp là \(\frac{9}{2}{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP