Cho hình hộp ABCD. A′B′C′D′ có AC′ và A′C cắt nhau tại O (Hình vẽ)

a) Tìm vec tơ \[\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \].
b) Cho biết mối quan hệ giữa vec tơ tìm được ở câu a) và vec tơ \[\overrightarrow {AO} \].
Quảng cáo
Trả lời:

a) Theo quy tắc hình hộp ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {A{A^\prime }} = \overrightarrow {A{C^\prime }} \).
\({\rm{b}})\) Vì \(A{A^\prime }//C{C^\prime }\) và \(A{A^\prime } = C{C^\prime }\) (vì cùng song song và bằng \(B{B^\prime }\) )
Nên \(A{A^\prime }{C^\prime }C\) là hình bình hành.
Mà \(A{C^\prime }\) và \({{\rm{A}}^\prime }C\) cắt nhau tại \({\rm{O}}\) nên \({\rm{O}}\) là trung điếm của \({\rm{AC}}\) '.
Suy ra \(AO = \frac{1}{2}A{C^\prime }\) mà \(\overrightarrow {AO} \) và \(\overrightarrow {A{C^\prime }} \) cùng hướng nên \(\overrightarrow {AO} = \frac{1}{2}\overrightarrow {A{C^\prime }} \) hay \(\overrightarrow {A{C^\prime }} = 2\overrightarrow {AO} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} ,\overrightarrow {MN} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \).
Do đó \(2\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {AB} + \overrightarrow {DC} + \overrightarrow {BN} + \overrightarrow {CN} \).
Vì \(M\) là trung điểm của đoạn thẳng AD nên \(\overrightarrow {MA} + \overrightarrow {MD} = \vec 0\).
Vì \(N\) là trung diểm của đoạn thẳng BC nên \(\overrightarrow {BN} + \overrightarrow {CN} = \vec 0\).
Do đó \(\overrightarrow {MN} = \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {DC} )\).
b) Ta có: \(\overrightarrow {AB} = \overrightarrow {AG} + \overrightarrow {GB} ,\overrightarrow {AC} = \overrightarrow {AG} + \overrightarrow {GC} ,\overrightarrow {AD} = \overrightarrow {AG} + \overrightarrow {GD} \).
Suy ra \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} \).
Vì \(G\) là trọng tâm của tam giác BCD nên \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).
Do đó \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \).
Lời giải
Khi ABCD.EFGH là hình hộp đứng thì EAC là tam giác vuông tại A, do đó:
EC2 = EA2 + AC2 = 100 + 91 = 191. Suy ra EM = \[EM = \frac{1}{3}\sqrt {191} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.