2 bài tập Biểu thức toạ độ của tổng, hiệu hai vectơ và tích của một số với một vectơ (có lời giải)
36 người thi tuần này 4.6 100 lượt thi 2 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có \(2\vec a = (4; - 2;10);\frac{1}{5}\vec b = \left( {0;\frac{3}{5}; - \frac{3}{5}} \right);3\vec c = (3;12; - 6)\).
Do đó \(\vec d = \left( {4 - 0 + 3; - 2 - \frac{3}{5} + 12;10 - \left( { - \frac{3}{5}} \right) + ( - 6)} \right)\), hay \(\vec d = \left( {7;\frac{{47}}{5};\frac{{23}}{5}} \right)\).
Lời giải
a) Vì \(\vec u = - 2\vec i + 3\vec j + \frac{3}{4}\vec k\) nên \(\vec u = \left( { - 2;3;\frac{3}{4}} \right)\).
b) Vì \(\vec v = \left( {3; - \frac{5}{4};2} \right)\) nên \(\vec v = 3\vec i - \frac{5}{4}\vec j + 2\vec k\).
c) Biểu diễn \(\vec a\) qua các vectơ đơn vị:
\( = 2\vec u + \frac{1}{3}\vec v = 2\left( { - 2\vec i + 3\vec j + \frac{3}{4}\vec k} \right) + \frac{1}{3}\left( {3\vec i - \frac{5}{4}\vec j + 2\vec k} \right) = - 3\vec i + \frac{{67}}{{12}}\vec j + \frac{{13}}{6}\vec k.\)
Vậy: \(\vec a = \left( { - 3;\frac{{67}}{{12}};\frac{{13}}{6}} \right).\)