Cho \(\vec a = (2; - 1;5),\vec b = (0;3; - 3),\vec c = (1;4; - 2)\). Tim toạ độ của vectơ \(\vec d = 2\vec a - \frac{1}{5}\vec b + 3\vec c\).
Quảng cáo
Trả lời:
Ta có \(2\vec a = (4; - 2;10);\frac{1}{5}\vec b = \left( {0;\frac{3}{5}; - \frac{3}{5}} \right);3\vec c = (3;12; - 6)\).
Do đó \(\vec d = \left( {4 - 0 + 3; - 2 - \frac{3}{5} + 12;10 - \left( { - \frac{3}{5}} \right) + ( - 6)} \right)\), hay \(\vec d = \left( {7;\frac{{47}}{5};\frac{{23}}{5}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(\vec u = - 2\vec i + 3\vec j + \frac{3}{4}\vec k\) nên \(\vec u = \left( { - 2;3;\frac{3}{4}} \right)\).
b) Vì \(\vec v = \left( {3; - \frac{5}{4};2} \right)\) nên \(\vec v = 3\vec i - \frac{5}{4}\vec j + 2\vec k\).
c) Biểu diễn \(\vec a\) qua các vectơ đơn vị:
\( = 2\vec u + \frac{1}{3}\vec v = 2\left( { - 2\vec i + 3\vec j + \frac{3}{4}\vec k} \right) + \frac{1}{3}\left( {3\vec i - \frac{5}{4}\vec j + 2\vec k} \right) = - 3\vec i + \frac{{67}}{{12}}\vec j + \frac{{13}}{6}\vec k.\)
Vậy: \(\vec a = \left( { - 3;\frac{{67}}{{12}};\frac{{13}}{6}} \right).\)