Câu hỏi:

17/10/2025 31 Lưu

Cho hàm số \(f(x)\) có đạo hàm \(f'(x)\)liên tục trên \(\mathbb{R}\),\(\int\limits_0^4 {f'\left( x \right)dx = 6} \)\(f(0) = 2\). Giá trị của \(f(4)\)là:     

A.  4.                                 
B. 8.                                
C.  7.  
D.  \(2.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

\(\int\limits_0^4 {f'\left( x \right)dx = \left. {f\left( x \right)} \right|_0^4}  = f\left( 4 \right) - f\left( 0 \right)\)\( \Rightarrow f\left( 4 \right) = \int\limits_0^4 {f'\left( x \right)}  + f\left( 0 \right) = 6 + 2 = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).

Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt}  = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.

Câu 2

A. \(V = \int\limits_{ - 1}^1 {3x} dx.\)                    
B. \(V = \int\limits_{ - 1}^1 {{{(3x)}^2}} dx.\)                           
C. \(V = \int\limits_{ - 1}^1 {(6x} {)^2}dx.\)                              
D. \(V = \int\limits_{ - 1}^1 {6x} dx.\)

Lời giải

Chọn B

Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).

Câu 4

Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).

a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).

b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).

c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).

d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(V = \frac{{9\pi }}{2}.\)                                      
B. \(V = \frac{{15\pi }}{2}.\)               
C. \(V = 21\pi .\)             
D. \(V = 9\pi .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP