Cho hàm số \(f\left( x \right) = \frac{a}{{{x^2}}} + \frac{b}{x} + 2\) với a, b là các số hữu tỉ thỏa điều kiện \(\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} = 2 - 3\ln 2\). Tính \(T = a + b\).
Cho hàm số \(f\left( x \right) = \frac{a}{{{x^2}}} + \frac{b}{x} + 2\) với a, b là các số hữu tỉ thỏa điều kiện \(\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} = 2 - 3\ln 2\). Tính \(T = a + b\).
Quảng cáo
Trả lời:
\[\int\limits_{\frac{1}{2}}^1 {f\left( x \right)dx} = \int\limits_{\frac{1}{2}}^1 {\left( {\frac{a}{{{x^2}}} + \frac{b}{x} + 2} \right)dx} = \left. {\left( { - \frac{a}{x} + b\ln x + 2x} \right)} \right|_{\frac{1}{2}}^1\]\( = a + 1 + b\ln 2\).
Suy ra \(\left\{ \begin{array}{l}a + 1 = 2\\b = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 3\end{array} \right.\). Do đó \(T = a + b = - 2\).
Trả lời: −2.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Khi ô tô dừng hẳn thì \(v(t) = 30 - 3t = 0 \Leftrightarrow t = 10\).
Quãng đường ô tô di chuyển được là \(s = \int\limits_0^{10} {\left( {30 - 3t} \right)dt} = \left. {\left( {30t - \frac{{3{t^2}}}{2}} \right)} \right|_0^{10} = 150\)m.
Câu 2
Lời giải
Chọn B
Thể tích của vật thể \(V = \int\limits_{ - 1}^1 {{{\left( {3x} \right)}^2}dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và \(\int\limits_1^3 {f(x)dx = } 10\).
a) \(F'(x) = f(x),\forall x \in \mathbb{R}.\)
b) \(F(3) + F(1) = 10\).
c) \(\int\limits_{}^{} {f(x)} dx = F(x) + C\), với C là một hằng số.
d) \(\int\limits_1^3 {(x + f(x))} dx = 14.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Cho \(({H_1})\) là hình phẳng giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục \(Ox\)và đường thẳng \(x = - 1\); \(({H_2})\) là hình phẳng giới hạn bởi đồ thị của hai hàm số \(f(x) = {x^2}\) và \(g(x) = - x\).
a) Đồ thị của hai hàm số \(f(x)\)và \(g(x)\)cắt nhau tại hai điểm có hoành độ lần lượt là \(0\)và \( - 1\).
b) Diện tích hình phẳng \(({H_1})\) bằng \(\frac{\pi }{3}.\)
c) Thể tích khối tròn xoay sinh ra khi quay hình \(({H_1})\) quanh trục \(Ox\) bằng \(\frac{\pi }{5}.\)
d) Diện tích của \(({H_1})\) gấp đôi diện tích của \(({H_2})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.