Câu hỏi:

08/08/2025 3 Lưu

Một xe ô tô đang chạy với tốc độ \(72\;{\rm{km}}/{\rm{h}}\) thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \(80\;{\rm{m}}\). Người lái xe phản ứng một giây sau đó bằng cách đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \(v(t) =  - 10t + 30(\;{\rm{m}}/{\rm{s}})\), trong đó \(t\) là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \(s(t)\) là quãng đường xe ô tô đi được trong \(t\) (giây) kể từ lúc đạp phanh.

a) Lập công thức biểu diễn hàm số \(s(t)\).

b) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là bao nhiêu giây?

c) Quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là bao nhiêu mét? Xe ô tô liệu có gặp tai nạn do va chạm với chướng ngại vật trên đường hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta đã biết, công thức tính quãng đường \(s(t)\) xe ô tô đi được trong \(t\) (giây) là một nguyên hàm của hàm \(v(t)\). Do \(\int {( - 10t + 30)} {\rm{d}}t =  - 5{t^2} + 30t + C\)

nên ta có: \(s(t) =  - 5{t^2} + 30t + C\) vởi \(C\) là hằng số nào đó. Do \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) =  - 5{t^2} + 30t\).

b) Xe ô tô dừng hẳn khi \(v(t) = 0\), tức là \( - 10t + 30 = 0\) hay \(t = 3\).

Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.

c) Ta có: tốc độ \(72\;{\rm{km}}/{\rm{h}}\) cũng là tốc độ \(20\;{\rm{m}}/{\rm{s}}\).

Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: \(s(3) =  - 5 \cdot {3^2} + 30 \cdot 3 = 45(\;{\rm{m}})\).

Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: \(20 + 45 = 65(\;{\rm{m}})\).

Do \(65 < 80\) nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối vởi xe ô tô đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).

Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)

Suy ra \(s(t) = 4\sin t + C\).

Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).

Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).

Lời giải

Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).

Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).

Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).

Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).

Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).

Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).