Câu hỏi:

08/08/2025 3 Lưu

Một con lắc lò xo dao động điều hoà theo phương ngang trên mặt phẳng không ma sát như Hình 1, có vận tốc tức thời cho bởi v(t) = 4cos t, trong đó t tính bằng giây và v(t) tính bằng centimét/giây. Tại thời điểm t = 0, con lắc đó ở vị trí cân bằng. Lập phương trình chuyển động của con lắc đó?

Một con lắc lò xo dao động điều hoà theo phương ngang trên mặt phẳng không ma sát như Hình 1 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử con lắc chuyển động theo phương trình: s = s(1). Suy ra s' (t) = v(t), do đó s(t) là một nguyên hàm của v(t). Ta có: \[\int {v\left( t \right)dt}  = \int {4cost{\rm{dt}}}  = 4sint + C.\]

Suy ra s(t)=4sint+C.

Tại thời điểm t = 0, ta có s(0) = 0, tức là 4sin0 + C = 0, hay C = 0. Vậy phương trình chuyển động của con lắc là: s(t) = 4sint.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).

Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)

Suy ra \(s(t) = 4\sin t + C\).

Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).

Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).

Lời giải

Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).

Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).

Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).

Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).

Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).

Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).