Câu hỏi:

08/08/2025 3 Lưu

Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \({B^\prime }(t) = 20{t^3} - 300{t^2} + 1000t,\) trong đó \(t\) tính bằng giờ \((0 \le t \le 15),{B^\prime }(t)\) tính bằng khách/giờ.

(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-I, Cornelsen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.

a) Viết công thức của hàm số \(B(t)\) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\).

b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?

c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?

d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Hàm số \({\rm{B}}({\rm{t}})\) là một nguyên hàm của hàm số \(B(t)\).

Ta có \(\int {{B^\prime }} (t)dt = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt\)\( = \int 2 0{t^3}dt - \int 3 00{t^2}dt + \int 1 000tdt.\)

Suy ra \(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + C\).

Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B(1) = 500\).

Do đó, \(5 \cdot {1^4} - 100 \cdot {1^3} + 500 \cdot {1^2} + C = 500\), suy ra \(C = 95\).

Vậy công thức của hàm số \({\rm{B}}({\rm{t}})\) biểu diễn số lượng khách tham dự lễ hội là

\(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + 95(0 \le t \le 15).\)

b) Ta có \(B(3) = 5 \cdot {3^4} - 100 \cdot {3^3} + 500 \cdot {3^2} + 95 = 2300\).

Vậy sau 3 giờ có 2300 khách tham dự lễ hội.

c) Số lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({\rm{B}}({\rm{t}})\) trên đoạn [0;15].

Ta có \({B^\prime }({\rm{t}}) = 20{{\rm{t}}^3} - 300{{\rm{t}}^2} + 1000{\rm{t}}\).

Trên khoảng \((0;15),{B^\prime }({\rm{t}}) = 0\) khi \(t = 5\) hoặc \({\rm{t}} = 10\).

\(B(0) = 95;B(5) = 3220;B(10) = 95;B(15) = 28220.{\rm{ }}\)

Do đó, \({\max _{[0;15]}}B(t) = 28220\) tại \(t = 15\).

Vậy số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ.

d) Tốc độ thay đổi lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({B^\prime }({\rm{t}})\) trên đoạn [0 ; 15].

Ta có \({B^{\prime \prime }}(t) = {\left( {20{t^3} - 300{t^2} + 1000t} \right)^\prime } = 60{t^2} - 600t + 1000\).

Trên khoảng \((0;15),{{\rm{B}}^{\prime \prime }}({\rm{t}}) = 0\) khi \(t = \frac{{15 - 5\sqrt 3 }}{3}\) hoặc \(t = \frac{{15 + 5\sqrt 3 }}{3}\).

\({{\rm{B}}^\prime }(0) = 0;B\left( {\frac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B\left( {\frac{{15 + 5\sqrt 3 }}{3}} \right) \approx  - 962,25;{\rm{B}}(15) = 15000.{\rm{ }}\)

Do đó, \({\max _{[0;15]}}{B^\prime }(t) = 15000\) tại \(t = 15\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).

Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)

Suy ra \(s(t) = 4\sin t + C\).

Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).

Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).

Lời giải

Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).

Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).

Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).

Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).

Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).

Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).