Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \({B^\prime }(t) = 20{t^3} - 300{t^2} + 1000t,\) trong đó \(t\) tính bằng giờ \((0 \le t \le 15),{B^\prime }(t)\) tính bằng khách/giờ.
(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-I, Cornelsen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.
a) Viết công thức của hàm số \(B(t)\) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\).
b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?
c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?
d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?
Tại một lễ hội dân gian, tốc độ thay đổi lượng khách tham dự được biểu diễn bằng hàm số \({B^\prime }(t) = 20{t^3} - 300{t^2} + 1000t,\) trong đó \(t\) tính bằng giờ \((0 \le t \le 15),{B^\prime }(t)\) tính bằng khách/giờ.
(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-I, Cornelsen 2016). Sau một giờ, 500 người đã có mặt tại lễ hội.
a) Viết công thức của hàm số \(B(t)\) biểu diễn số lượng khách tham dự lễ hội với \(0 \le t \le 15\).
b) Sau 3 giờ sẽ có bao nhiêu khách tham dự lễ hội?
c) Số lượng khách tham dự lễ hội lớn nhất là bao nhiêu?
d) Tại thời điểm nào thì tốc độ thay đổi lượng khách tham dự lễ hội là lớn nhất?
Quảng cáo
Trả lời:
a) Hàm số \({\rm{B}}({\rm{t}})\) là một nguyên hàm của hàm số \(B(t)\).
Ta có \(\int {{B^\prime }} (t)dt = \int {\left( {20{t^3} - 300{t^2} + 1000t} \right)} dt\)\( = \int 2 0{t^3}dt - \int 3 00{t^2}dt + \int 1 000tdt.\)
Suy ra \(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + C\).
Vì sau một giờ, 500 người đã có mặt tại lễ hội nên \(B(1) = 500\).
Do đó, \(5 \cdot {1^4} - 100 \cdot {1^3} + 500 \cdot {1^2} + C = 500\), suy ra \(C = 95\).
Vậy công thức của hàm số \({\rm{B}}({\rm{t}})\) biểu diễn số lượng khách tham dự lễ hội là
\(B(t) = 5{t^4} - 100{t^3} + 500{t^2} + 95(0 \le t \le 15).\)
b) Ta có \(B(3) = 5 \cdot {3^4} - 100 \cdot {3^3} + 500 \cdot {3^2} + 95 = 2300\).
Vậy sau 3 giờ có 2300 khách tham dự lễ hội.
c) Số lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({\rm{B}}({\rm{t}})\) trên đoạn [0;15].
Ta có \({B^\prime }({\rm{t}}) = 20{{\rm{t}}^3} - 300{{\rm{t}}^2} + 1000{\rm{t}}\).
Trên khoảng \((0;15),{B^\prime }({\rm{t}}) = 0\) khi \(t = 5\) hoặc \({\rm{t}} = 10\).
\(B(0) = 95;B(5) = 3220;B(10) = 95;B(15) = 28220.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}B(t) = 28220\) tại \(t = 15\).
Vậy số lượng khách tham dự lễ hội lớn nhất là 28220 khách sau 15 giờ.
d) Tốc độ thay đổi lượng khách tham dự lễ hội lớn nhất chính là giá trị lớn nhất của hàm số \({B^\prime }({\rm{t}})\) trên đoạn [0 ; 15].
Ta có \({B^{\prime \prime }}(t) = {\left( {20{t^3} - 300{t^2} + 1000t} \right)^\prime } = 60{t^2} - 600t + 1000\).
Trên khoảng \((0;15),{{\rm{B}}^{\prime \prime }}({\rm{t}}) = 0\) khi \(t = \frac{{15 - 5\sqrt 3 }}{3}\) hoặc \(t = \frac{{15 + 5\sqrt 3 }}{3}\).
\({{\rm{B}}^\prime }(0) = 0;B\left( {\frac{{15 - 5\sqrt 3 }}{3}} \right) \approx 962,25;B\left( {\frac{{15 + 5\sqrt 3 }}{3}} \right) \approx - 962,25;{\rm{B}}(15) = 15000.{\rm{ }}\)
Do đó, \({\max _{[0;15]}}{B^\prime }(t) = 15000\) tại \(t = 15\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử con lắc chuyển động theo phương trình: \(s = s(t)\). Suy ra \({s^\prime }(t) = v(t)\), do đó \(s(t)\) là một nguyên hàm của \(v(t)\).
Ta có: \(\int v (t){\rm{d}}t = \int 4 \cos t\;{\rm{d}}t = 4\int {\cos } t\;{\rm{d}}t = 4\sin t + C\)
Suy ra \(s(t) = 4\sin t + C\).
Tại thời điểm \(t = 0\), ta có \(s(0) = 0\), tức là \(4\sin 0 + C = 0\), hay \(C = 0\).
Vậy phương trình chuyển động của con lắc là: \(s(t) = 4\sin t\).
Lời giải
Ta có \(v(t) = \int a \;{\rm{d}}t = \int 2 \;{\rm{d}}t = 2t + C\).
Vì \(v(0) = 10\) nên \(C = 10\). Suy ra \(v(t) = 2t + 10\).
Ta có \(s(t) = \int v (t){\rm{d}}t = \int {(2t + 10)} {\rm{d}}t = {t^2} + 10t + C\).
Ta có \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = {t^2} + 10t\).
Ta có \(s(3) = {3^2} + 10.3 = 39(\;{\rm{m}})\).
Vậy trong 3 giây kể từ khi bắt đầu tăng tốc, xe đi được \(39\;{\rm{m}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.