Một ô tô đang chạy với tốc độ \(19\;{\rm{m}}/{\rm{s}}\) thì hãm phanh và chuyển động chậm dần với tốc độ \(v(t) = 19 - 2t(\;{\rm{m}}/{\rm{s}})\). Kề từ khi hãm phanh, quãng đường ô tô đi được sau 1 giây, 2 giây, 3 giây là bao nhiêu?
Một ô tô đang chạy với tốc độ \(19\;{\rm{m}}/{\rm{s}}\) thì hãm phanh và chuyển động chậm dần với tốc độ \(v(t) = 19 - 2t(\;{\rm{m}}/{\rm{s}})\). Kề từ khi hãm phanh, quãng đường ô tô đi được sau 1 giây, 2 giây, 3 giây là bao nhiêu?
Quảng cáo
Trả lời:

Quãng đường ô tô đi được sau \(t\) giây là \(s(t) = \int {(19 - 2t)} {\rm{d}}t = 19t - {t^2} + C\).
Ta có \(s(0) = 0\) nên \(C = 0\). Do đó, \(s(t) = 19t - {t^2}\).
\(s(1) = 18\;{\rm{m}};s(2) = 34\;{\rm{m}};s(3) = 48\;{\rm{m}}{\rm{. }}\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta đã biết, công thức tính quãng đường s(t) xe ô tô đi được trong t (giây) là một nguyên hàm của hàm v(t). Do \[\int {\left( { - 10t + 30} \right)dt} {\rm{ }} = - 5{t^2} + 30t + C\]
nên ta có: \[s(t) = - 5{t^2} + 30t + C\] với C là hằng số. Do s(0) = 0 nên C = 0. Suy ra \[s(t) = - 5{t^2} + 30t\].
b) Xe ô tô dừng hẳn khi v(t) = 0, tức là – 10t + 30 = 0 hay t= 3.
Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.
c) Ta có: tốc độ 72 km/h cũng là tốc độ 20 m/s.
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là:
s(3) = − 5 .32 + 30 . 3 = 45 (m).
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 +45 = 65 (m).
Do 65 < 80 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối với xe ô tô đó.
Lời giải
a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:
\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t = - 4,9{t^2} + 19,6t + C\)
Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).
Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) = - 4,9{t^2} + 19,6t + 24,5\)
b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t = - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).
Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.