Câu hỏi:

19/08/2025 92 Lưu

Doanh thu bán hàng của một công ty khi bán một loại sản phẩm là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bản là hàm số \[{M_R}(x) = R'(x)\]. Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi \[{M_R}\left( x \right) = 300 - 0,1x\], ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bản 1.000 con chíp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \({R^\prime }(x) = {M_R}(x){\rm{. }}\)

Cho trước hàm tốc độ biến động của doanh thu \({M_R}(x)\) khi \(x\) đơn vị sản phẩm được bán ra thì \(R(x)\) là một nguyên hàm của \({M_R}(x)\). Do đó

\(R(x) = \int {{M_R}} (x){\rm{d}}x = \int {(300 - 0,1x)} {\rm{d}}x = 300x - \frac{{0,1{x^2}}}{2} + C\)

Từ ý nghĩa thực tiễn, \(R(0) = 0\) nên \(C = 0\). Từ đó tìm được \(R(1000) = 200000\) (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta đã biết, công thức tính quãng đường s(t) xe ô tô đi được trong t (giây) là một nguyên hàm của hàm v(t). Do \[\int {\left( { - 10t + 30} \right)dt} {\rm{ }} =  - 5{t^2} + 30t + C\]

nên ta có: \[s(t) =  - 5{t^2} + 30t + C\] với C là hằng số. Do s(0) = 0 nên C = 0. Suy ra \[s(t) =  - 5{t^2} + 30t\].

b) Xe ô tô dừng hẳn khi v(t) = 0, tức là – 10t + 30 = 0 hay t= 3.

Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.

c) Ta có: tốc độ 72 km/h cũng là tốc độ 20 m/s.

Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là:

s(3) = − 5 .32 + 30 . 3 = 45 (m).

Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 +45 = 65 (m).

Do 65 < 80 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối với xe ô tô đó.

Lời giải

a) Gọi \(h(t)\) là độ cao của quả bóng tại thời điểm \(t(h(t)\) tính theo mét, \(t\) tính theo giây). Khi đó, ta có:

\(h(t) = \int {( - 9,8t + 19,6)} {\rm{d}}t =  - 4,9{t^2} + 19,6t + C\)

Mà quả bóng được ném lên từ độ cao \(24,5\;{\rm{m}}\) tức là tại thời điểm \(t = 0\) thì \(h = 24,5\) hay \(h(0) = 24,5\). Suy ra \(C = 24,5\).

Vậy công thức tính độ cao \(h(t)\) của quả bóng theo thời gian \(t\) là: \(h(t) =  - 4,9{t^2} + 19,6t + 24,5\)

b) Khi quả bóng chạm đất thì \(h(t) = 0\). Ta có: \( - 4,9{t^2} + 19,6t + 24,5 = 0\). Giải phương trình ta được \(t =  - 1;t = 5\). Mà \(t > 0\) nên \(t = 5\).

Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.