Đề kiểm tra Toán 12 Cánh diều Chương 5 có đáp án - Đề 2
25 người thi tuần này 4.6 152 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
\(M\left( {3;4; - 5} \right)\).
\(N\left( {2; - 5;3} \right)\).
\(P\left( { - 3; - 4;5} \right)\).
\(Q\left( {2;5; - 3} \right)\).
Lời giải
Đáp án đúng: A
Thay tọa độ của điểm \(M\left( {3;4; - 5} \right)\) vào phương trình đường thẳng \(d\) ta có \(\frac{{3 - 3}}{2} = \frac{{4 - 4}}{{ - 5}} = \frac{{ - 5 + 5}}{3}.\)
Do đó \(M \in d\).
Câu 2
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 8\).
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
Lời giải
Đáp án đúng: B
Vì mặt cầu \(\left( S \right)\)có tâm \(A\left( {2;1;0} \right)\), đi qua điểm \(B\left( {0;1;2} \right)\) nên mặt cầu \(\left( S \right)\) có tâm \(A\left( {2;1;0} \right)\) và có bán kính \(R = AB\).
Ta có: \(\overrightarrow {AB} = \left( { - 2;0;2} \right)\). Suy ra \(R = \left| {\overrightarrow {AB} } \right| = 2\sqrt 2 \).
Vậy \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
Câu 3
\[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
\[\overrightarrow u = \left( { - 2;3;2} \right)\].
\[\overrightarrow u = \left( {2; - 3; - 2} \right)\].
\[\overrightarrow u = \left( { - 2; - 3; - 2} \right)\].
Lời giải
Đáp án đúng: A
Từ phương trình \[\frac{{x + 1}}{{ - 2}} = \frac{{2 - y}}{3} = \frac{z}{2} \Leftrightarrow \frac{{x + 1}}{{ - 2}} = \frac{{y - 2}}{{ - 3}} = \frac{z}{2}\], khi đó một vectơ chỉ phương của đường thẳng \[\left( d \right)\] là \[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
Câu 4
\(\frac{{x + 1}}{1} = \frac{{y + 3}}{{ - 5}} = \frac{{z - 2}}{1}\).
\(\frac{{x - 1}}{1} = \frac{{y - 3}}{3} = \frac{{z + 2}}{{ - 2}}\).
\(\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 5}} = \frac{{z + 1}}{1}\).
\(\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 5}} = \frac{{z - 1}}{1}\).
Lời giải
Đáp án đúng: C
Vectơ chỉ phương của đường thẳng \(AB\) là \(\overrightarrow u = \overrightarrow {AB} = \left( {1; - 5;1} \right)\).
Phương trình đường thẳng \(AB\) là \(\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 5}} = \frac{{z + 1}}{1}\).
Câu 5
\[3x + z + 7 = 0\].
\[3x - y - 7z + 1 = 0\].
\[3x + y - 7 = 0\].
\[3x + y - 7z - 3 = 0\].
Lời giải
Đáp án đúng: D
Phương trình mặt phẳng \[3x + y - 7z - 3 = 0\]có một vectơ pháp tuyến là \[\overrightarrow n = \left( {3;1; - 7} \right)\].
Câu 6
\[4x + 3y + 7z - 11 = 0\].
\[4x + 3y + 7z + 11 = 0\].
\[4x + 3y - 7z + 11 = 0\].
\[4x + 3y - 7z - 11 = 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
