Một đơn vị thiết kế theo đơn đặt hàng làm một nhà vườn ngoài trời để trồng rau. Người thiết kế đã vẽ mô hình nhà vườn trong hệ trục tọa độ \(Dxyz\) như hình vẽ, với các cột nhà là các đoạn thẳng \(AE,\,BF,\,CG\) và \(DH\); phần mái là tứ giác \[EFGH\] và hình vuông \[ABCD\] nằm trên mặt đất. Biết độ dài các đoạn thẳng \[AB = 20\,{\rm{m}}\], \[DH = 4\,{\rm{m}}\], \[AE = 3\,{\rm{m}}\] (mét được ký hiệu là m).
(a) Tọa độ điểm \(B\left( {20;20;0} \right)\) và \(H\left( {0\,;0\,;4} \right)\).
(b)Đường thẳng \(EH\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 20t\\y = 0\\z = 4 + t\end{array} \right.,\,\left( {t \in \mathbb{R}} \right)\).
(c) Mái nhà hợp với mặt đất một góc khoảng \(2,86^\circ \).
(d) Khách hàng đặt một camera ở vị trí \(L\) trên cột \(DH\) và cách mặt đất \(8\,{\rm{m}}\). Một vật ở vị trí \(M\left( {a\,;b\,;c} \right)\) thỏa mãn \(MA = MB = MC = MD = 2\sqrt {66} \,{\rm{m}}\) thì cách camera \(10\sqrt 2 \,{\rm{m}}\).
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:

a) Đúng. Theo bài ra ta có \(B\left( {20;20;0} \right)\) và \(H\left( {0\,;0\,;4} \right)\).
b) Sai. Vì \(E\left( {20\,;0\,;3} \right)\) và \(\overrightarrow {HE} \left( {20\,;0\,; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(EH\).
c) Đúng. Ta có \(F\left( {20\,;20\,;3} \right)\), \(\overrightarrow {EF} \left( {0\,;20\,;0} \right)\).
\(\left[ {\overrightarrow {EF} ;\overrightarrow {HE} } \right] = \left( { - 20;0; - 400} \right)\) là vectơ pháp tuyến của mặt phẳng \[\left( {EFGH} \right)\].
\[\left( {ABCD} \right)\] có vectơ pháp tuyến là \[\overrightarrow k \left( {0\,;0\,;1} \right)\].
\[\cos \left( {\left( {ABCD} \right),\left( {EFGH} \right)} \right) = \frac{{\left| {400} \right|}}{{\sqrt {{{20}^2} + {{400}^2}} }} = \frac{{400}}{{20\sqrt {401} }} = \frac{{20}}{{\sqrt {401} }}\].
Vậy mái nhà hợp với mặt đất một góc khoảng \(2,86^\circ \).
d) Đúng.
Gọi \(I\) là tâm hình vuông \[ABCD\] và \(MA = MB = MC = MD = 2\sqrt {66} \,{\rm{m}}\).
Suy ra \[M.ABCD\] là hình chóp đều nên \[MI \bot \left( {ABCD} \right)\].
Ta có \[DB = 20\sqrt 2 \left( {\rm{m}} \right) \Rightarrow ID = 10\sqrt 2 \left( {\rm{m}} \right)\].
Xét tam giác \[MID\]vuông tại \(I\): \(MI = \sqrt {M{D^2} - I{D^2}} = \sqrt {{{\left( {2\sqrt {66} } \right)}^2} - {{\left( {10\sqrt 2 } \right)}^2}} = 8\,\left( {\rm{m}} \right)\).
Vì \[MI\,{\rm{//}}\,DL,\,MI = DL = 8\,{\rm{m}}\].
Do đó \[DIML\] là hình bình hành nên \[ML = ID = 10\sqrt 2 \,{\rm{m}}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \(OA = \sqrt {{{\left( { - 65} \right)}^2} + {{\left( { - 25} \right)}^2} + {{30}^2}} \approx 75,8\,{\rm{km}}\).
Khi máy bay ở vị trí \(A\left( { - 65; - 25;30} \right)\) thì cách đài kiểm soát không lưu của sân bay một khoảng \(d \approx 75,8\,{\rm{km}} > 70\,{\rm{km}}\).
Vậy đài kiểm soát không lưu của sân bay không theo dõi được máy bay.
b) Đúng. Từ thông tin của hệ trục và máy bay di chuyển theo hướng Tây Nam với độ cao không đổi, quỹ đạo bay theo đường thẳng. Nên đường thẳng \(d\) có một vectơ chỉ phương \[\overrightarrow u = \left( {1;\,1;\,0} \right)\]. Đường thẳng \(d\) đi qua điểm \(A\left( { - 65; - 25;30} \right)\) nên có phương trình tham số: \(\left\{ \begin{array}{l}x = - 65 + t\\y = - 25 + t\\z = 30\end{array} \right.\).
c) Sai. Thay \(x,\,y,\,z\) theo \(t\) vào phương trình mặt cầu \(\left( S \right)\) ta được phương trình:
\({\left( { - 65 + t} \right)^2} + {\left( { - 25 + t} \right)^2} + {30^2} = 4900 \Leftrightarrow 2{t^2} - 180t + 850 = 0 \Leftrightarrow t = 5\) hoặc \(t = 85\)
Thay \(t = 5\) vào phương trình của đường thẳng \(d\) ta được \(M\left( { - 60; - 20;30} \right)\).
Thay \(t = 85\) vào phương trình của đường thẳng \(d\) ta được \(N\left( {20;60;30} \right)\).
Suy ra đường thẳng \(d\) cắt mặt cầu \(\left( S \right)\) tại hai điểm \(M\left( { - 60; - 20;30} \right)\) và \(N\left( {20;60;30} \right)\).
Hay độ dài đoạn \(MN\) là khoảng cách giữa vị trí đầu tiên và vị trí cuối cùng mà máy bay di chuyển trong phạm vi theo dõi của đài kiểm soát không lưu.
\(MN = \sqrt {{{\left( {60 + 20} \right)}^2} + {{\left( {20 + 60} \right)}^2}} = 80\sqrt 2 \,{\rm{km}}\).
Thời gian máy bay di chuyển trong phạm vi đài kiểm soát không lưu của sân bay theo dõi được là thời gian máy bay di chuyển được quãng đường \(80\sqrt 2 \,{\rm{km}}\).
Thời gian đó bằng \(\frac{{80\sqrt 2 }}{{200}}.60 \approx 33,94\) phút.
d) Đúng.Vùng kiểm không lưu của của đài kiểm soát trên là tập hợp những điểm cách tâm \(O\left( {0;\,\,0;\,\,0} \right)\) không quá \(70\,{\rm{km}}\). Hay tập hợp các điểm ở bên trong và trên bề mặt của mặt cầu \(\left( S \right)\) có phương trình: \({x^2} + {y^2} + {z^2} = {70^2} \Leftrightarrow {x^2} + {y^2} + {z^2} = 4900\).
Câu 2
Lời giải
Đáp án đúng: B
Đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{2}\) có một vectơ chỉ phương là \(\overrightarrow u = \left( {2;\, - 1;\,2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(x - 2y - 3z + 6 = 0\).
\(x - 2y + 3z - 12 = 0\).
\(x - 2y - 3z - 6 = 0\).
\(x - 2y + 3z + 12 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.