Đề kiểm tra Toán 12 Cánh diều Chương 6 có đáp án - Đề 2
28 người thi tuần này 4.6 89 lượt thi 11 câu hỏi 60 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
\(\frac{1}{2}\).
\(\frac{1}{4}\).
\(\frac{1}{8}\).
\(2\).
Lời giải
Đáp án đúng: A
Ta có: \[P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,4}}{{0,8}} = \frac{1}{2}\].
Câu 2
\(\frac{3}{7}\).
\(0,4\).
\(0,8\).
\(0,5\).
Lời giải
Đáp án đúng: B
Ta có \(P\left( {AB} \right) = P\left( {A|B} \right)P\left( B \right) = 0,5.0,8 = 0,4\).
Lời giải
Đáp án đúng: D
Không gian mẫu có số phần tử là 36.
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7, biết rằng xúc xắc thứ nhất xuất hiện mặt 1 chấm, là xác suất có điều kiện \(P\left( {\left. {A\,} \right|B} \right)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 1 chấm và xúc xắc thứ hai xuất hiện mặt 6 chấm nên \(P\left( {A \cap B} \right) = \frac{1}{{36}}.\) Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 1 chấm nên \(P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\).
Suy ra: \(P\left( {\left. {A\,} \right|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).
Câu 4
\(0,25\).
\(0,65\).
\(0,55\).
\(0,5\).
Lời giải
Đáp án đúng: B
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).
Công thức xác suất toàn phần:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,7 + 0,2.0,45 = 0,65\).
Câu 5
\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
Lời giải
Đáp án đúng: D
Giả sử \(A\) và \(B\) là hai biến cố ngẫu nhiên thỏa mãn \(P\left( A \right) > 0\) và \[0 < P\left( B \right) < 1\], khi đó ta có công thức Bayes \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\)hay \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Câu 6
\(\frac{7}{{13}}\).
\(\frac{6}{{13}}\).
\(\frac{4}{{13}}\).
\(\frac{9}{{13}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.