CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi:

Biến cố \[A\]: Kinh tế suy thoái.

Biến cố \[B\]: Trái phiếu có lợi nhuận cao.

Biến cố \[\overline A \]: Kinh tế tăng trưởng.

Ta có \[P\left( A \right) = 0,4\](Kinh tế suy thoái);

\[P\left( {B|A} \right) = 0,7\] (Trong khi kinh tế suy thoái, xác suất trái phiếu lợi nhuận cao);

\[P\left( {\overline A } \right) = 0,6\] (Kinh tế tăng trưởng);

\[P\left( {B|\overline A } \right) = 0,3\] (Trong khi kinh tế tăng trưởng, xác suất trái phiếu lợi nhuận cao).

Khi đó \[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,3 = 0,46\].

Áp dụng định lý Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,4}}{{0,46}} \approx 0,61\].

Đáp án: 0,61.

Lời giải

Gọi \(A\) là biến cố chọn đồng xu thứ \(n\,\,\left( {n = 1;\,2;\,3} \right)\).

\(B\) là biến cố tung hai lần thì thấy xuất hiện một lần mặt sấp và một lần mặt ngửa.

Vì chọn ngẫu nhiên nên \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = P\left( {{A_3}} \right) = \frac{1}{3}\).

Lấy ngẫu nhiên một đồng xu tung hai lần được một mặt sấp và một mặt ngửa thì ta có ba trường hợp như sau:

Trường hợp 1: Chọn được đồng xu thứ nhất là S-N và N-S nên \(P\left( {B|{A_1}} \right) = 2.{\left( {\frac{1}{2}} \right)^2} = \frac{1}{2}\).

Trường hợp 2: Chọn được đồng xu thứ hai là S-N và N-S nên ta có:

\(P\left( {B|{A_2}} \right) = 0,7.0,3 + 0,3.0,7 = 0,42\).

Trường hợp 3: Chọn được đồng xu thứ ba là N-N nên \(P\left( {B|{A_3}} \right) = 0\).

Áp dụng công thức Bayes ta tính được xác suất chọn được đồng xu thứ hai là:

\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( {{A_1}} \right).P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right).P\left( {B|{A_2}} \right) + P\left( {{A_3}} \right).P\left( {B|{A_3}} \right)}} = \frac{{0,42.\frac{1}{3}}}{{\frac{1}{3}.\frac{1}{2} + 0,42.\frac{1}{3} + 0.\frac{1}{3}}} \approx 0,46\).

Vậy xác suất chọn được đồng xu thứ hai là \(0,46\).

Đáp án: 0,46.