Câu hỏi:

17/10/2025 135 Lưu

Một nhà đầu tư đang xem xét đầu tư vào hai loại tài sản: Cổ phiếu và trái phiếu. Qua nghiên cứu thị trường có hai kịch bản sau có thể xảy ra:

Kịch bản Kinh tế tăng trưởng: Xác suất xảy ra kịch bản kinh tế tăng trưởng trong năm tới là \[60\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[80\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[30\% \].

Kịch bản Kinh tế suy thoái: Xác suất xảy ra kịch bản kinh tế suy thoái trong năm tới là \[40\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[10\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[70\% \].

Vào cuối năm, nhà đầu tư nhận thấy rằng trái phiếu đã mang lại lợi nhuận cao. Tính xác suất để kịch bản kinh tế trong năm đó là suy thoái (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,61

Gọi:

Biến cố \[A\]: Kinh tế suy thoái.

Biến cố \[B\]: Trái phiếu có lợi nhuận cao.

Biến cố \[\overline A \]: Kinh tế tăng trưởng.

Ta có \[P\left( A \right) = 0,4\](Kinh tế suy thoái);

\[P\left( {B|A} \right) = 0,7\] (Trong khi kinh tế suy thoái, xác suất trái phiếu lợi nhuận cao);

\[P\left( {\overline A } \right) = 0,6\] (Kinh tế tăng trưởng);

\[P\left( {B|\overline A } \right) = 0,3\] (Trong khi kinh tế tăng trưởng, xác suất trái phiếu lợi nhuận cao).

Khi đó \[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,3 = 0,46\].

Áp dụng định lý Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,4}}{{0,46}} \approx 0,61\].

Đáp án: 0,61.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) tổng số sản phẩm của cả nhà máy nên xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.

b) Đúng. Gọi A là biến cố “Chọn được sản phẩm từ phân xưởng thứ nhất”,

\(\overline A \) là biến cố “Chọn được sản phẩm từ phân xưởng thứ hai”.

B là biến cố “Chọn được sản phẩm là phế phẩm”.

Khi đó: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\);

\(P\left( {B\mid A} \right) = 0,16;P\left( {\overline B \mid A} \right) = 0,84;P\left( {B\mid \overline A } \right) = 0,2\).

Áp dụng công thức tính xác suất tính xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)\)

\( = 0,6.0,16 + 0,4.0,2 = 0,176\).

Vậy xác suất lấy được phế phẩm là 0,176.

c) Đúng. Chọn được phế phẩm, biến cố phế phẩm đó do phân xưởng thứ nhất sản xuất là \(A\mid B\), áp dụng công thức Bayes, ta được:

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,16}}{{0,176}} = \frac{6}{{11}} \approx 0,55\).

d) Sai. Khi lấy được sản phẩm tốt, để so sánh khả năng sản phẩm thuộc phân xưởng, ta tính xác suất để sản phẩm tốt được chọn ấy thuộc phân xưởng thứ nhất

Từ ý a) suy ra \(P\left( {\overline B } \right) = 1 - 0,176 = 0,824\).

Theo công thức Bayes, ta có: \(P\left( {A\mid \overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B \mid A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,6.0,84}}{{0,824}} \approx 0,61\).

Vậy khả năng sản phẩm tốt được chọn từ phân xưởng thứ nhất cao hơn.

Lời giải

Gọi \(A\) là biến cố chọn đồng xu thứ \(n\,\,\left( {n = 1;\,2;\,3} \right)\).

\(B\) là biến cố tung hai lần thì thấy xuất hiện một lần mặt sấp và một lần mặt ngửa.

Vì chọn ngẫu nhiên nên \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = P\left( {{A_3}} \right) = \frac{1}{3}\).

Lấy ngẫu nhiên một đồng xu tung hai lần được một mặt sấp và một mặt ngửa thì ta có ba trường hợp như sau:

Trường hợp 1: Chọn được đồng xu thứ nhất là S-N và N-S nên \(P\left( {B|{A_1}} \right) = 2.{\left( {\frac{1}{2}} \right)^2} = \frac{1}{2}\).

Trường hợp 2: Chọn được đồng xu thứ hai là S-N và N-S nên ta có:

\(P\left( {B|{A_2}} \right) = 0,7.0,3 + 0,3.0,7 = 0,42\).

Trường hợp 3: Chọn được đồng xu thứ ba là N-N nên \(P\left( {B|{A_3}} \right) = 0\).

Áp dụng công thức Bayes ta tính được xác suất chọn được đồng xu thứ hai là:

\(P\left( {{A_2}|B} \right) = \frac{{P\left( {B|{A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( {{A_1}} \right).P\left( {B|{A_1}} \right) + P\left( {{A_2}} \right).P\left( {B|{A_2}} \right) + P\left( {{A_3}} \right).P\left( {B|{A_3}} \right)}} = \frac{{0,42.\frac{1}{3}}}{{\frac{1}{3}.\frac{1}{2} + 0,42.\frac{1}{3} + 0.\frac{1}{3}}} \approx 0,46\).

Vậy xác suất chọn được đồng xu thứ hai là \(0,46\).

Đáp án: 0,46.

Câu 6

\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).

\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP