Giả sử \(A\) và \(B\) là hai biến cố ngẫu nhiên thỏa mãn \(P\left( A \right) > 0\) và \[0 < P\left( B \right) < 1\]. Khẳng định nào sau đây đúng?
\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:

Đáp án đúng: D
Giả sử \(A\) và \(B\) là hai biến cố ngẫu nhiên thỏa mãn \(P\left( A \right) > 0\) và \[0 < P\left( B \right) < 1\], khi đó ta có công thức Bayes \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\)hay \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi:
Biến cố \[A\]: Kinh tế suy thoái.
Biến cố \[B\]: Trái phiếu có lợi nhuận cao.
Biến cố \[\overline A \]: Kinh tế tăng trưởng.
Ta có \[P\left( A \right) = 0,4\](Kinh tế suy thoái);
\[P\left( {B|A} \right) = 0,7\] (Trong khi kinh tế suy thoái, xác suất trái phiếu lợi nhuận cao);
\[P\left( {\overline A } \right) = 0,6\] (Kinh tế tăng trưởng);
\[P\left( {B|\overline A } \right) = 0,3\] (Trong khi kinh tế tăng trưởng, xác suất trái phiếu lợi nhuận cao).
Khi đó \[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,3 = 0,46\].
Áp dụng định lý Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,4}}{{0,46}} \approx 0,61\].
Đáp án: 0,61.
Lời giải
Đáp án đúng: D
Không gian mẫu có số phần tử là 36.
Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7, biết rằng xúc xắc thứ nhất xuất hiện mặt 1 chấm, là xác suất có điều kiện \(P\left( {\left. {A\,} \right|B} \right)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 1 chấm và xúc xắc thứ hai xuất hiện mặt 6 chấm nên \(P\left( {A \cap B} \right) = \frac{1}{{36}}.\) Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 1 chấm nên \(P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\).
Suy ra: \(P\left( {\left. {A\,} \right|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\frac{1}{2}\).
\(\frac{1}{4}\).
\(\frac{1}{8}\).
\(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(0,25\).
\(0,65\).
\(0,55\).
\(0,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.