Câu hỏi:

17/10/2025 235 Lưu

Các thí sinh tham dự một cuộc thi hoa khôi phải trải qua ba vòng thi: Vòng sơ khảo, Vòng bán kết và Vòng chung kết. Biết rằng, ban tổ chức sẽ chọn ra \(50{\rm{\% }}\) thí sinh đã đăng kí để vào Vòng sơ khảo. Khi kết thúc vòng sơ khảo, ban tổ chức sẽ chọn ra \(30{\rm{\% }}\) thí sinh của Vòng sơ khảo để vào Vòng bán kết. Khi kết thúc vòng bán kết, ban tổ chức sẽ chọn ra \(20{\rm{\% }}\) thí sinh của Vòng bán kết để vào Vòng chung kết. Chọn ngẫu nhiên 1 thí sinh đăng kí tham dự cuộc thi hoa khôi.

(a) Xác suất để thí sinh được chọn lọt vào Vòng sơ khảo là \(0,5\).

(b) Xác suất để thí sinh được chọn lọt vào Vòng bán kết là \(0,3\).

(c) Xác suất thí sinh được chọn lọt vào Vòng chung kết là \(0,03\).

(d) Biết rà̀ng thí sinh được chọn không lọt vào Vòng chung kết, xác suất thí sinh đó lọt vào Vòng sơ khảo nhỏ hơn \(0,49\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A,B,C\) lần lượt là biến cố thí sinh được chọn lọt vào Vòng sơ khảo, Vòng bán kết và Vòng chung kết.

a) Đúng. Vì có \(50{\rm{\% }}\) thí \({\rm{sinh}}\) lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).

b) Sai. Xác suất để thí sinh lọt vào Vòng bán kết là

\({\rm{\;}}P\left( B \right) = P\left( {AB} \right) = P\left( {B\mid A} \right)P\left( A \right) = 0,3 \cdot 0,5 = 0,15\).

c) Đúng. Xác suất để thí sinh lọt vào Vòng chung kết là

\(P\left( C \right) = P\left( {ABC} \right) = P\left( {C\mid AB} \right)P\left( {AB} \right) = 0,2.0,15 = 0,03\).

d) Sai. Ta có \(P\left( {\overline C \mid A} \right) = 1 - P\left( {C\mid A} \right) = 1 - \frac{{P\left( C \right)}}{{P\left( A \right)}} = 0,94\).

\[P\left( {A\mid \overline C } \right) = \frac{{P\left( {\overline C \mid A} \right)P\left( A \right)}}{{P\left( {\overline C } \right)}} = \frac{{0,94.0,5}}{{1 - 0,03}} = \frac{{47}}{{97}} = 0,485 < 0,49\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Gọi A là biến cố:” đồng xu fair coin được chọn”;

B là biến cố:”Mặt sấp xuất hiện khi gieo đồng xu”.

\(P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{4}.\frac{1}{2} = \frac{3}{8}\).

b) Đúng. Ta có \(P\left( {\overline B } \right) = P\left( A \right).P\left( {\left. {\overline B } \right|A} \right) + P\left( {\overline A } \right).P\left( {\left. {\overline B } \right|\overline A } \right) = \frac{3}{4}.\frac{1}{2} + \frac{1}{4}.1 = \frac{5}{8}\).

c ) Sai. Ta có \(P\left( {\left. {\overline A } \right|\overline B } \right) = \frac{{P\left( {\overline A } \right)P\left( {\left. {\overline B } \right|\overline A } \right)}}{{P\left( {\overline B } \right)}} = \frac{{\frac{1}{4}.1}}{{\frac{5}{8}}} = \frac{2}{5}\).

d) Đúng. Gọi C: “lần đầu xuất hiện mặt ngửa”;D:” lần 2 xuất hiện mặt ngửa”.

Ta có \(P\left( {\left. D \right|C} \right) = \frac{{P\left( {D \cap C} \right)}}{{P\left( C \right)}}\).

Ta tính \(P\left( {D \cap C} \right)\).

TH1: lần 1 chọn được đồng xu fair coin.

+) Xác suất chọn được 1 đồng xu fair coin là \(\frac{3}{4}\).

+) Xác suất khi gieo 1 đồng xu fair coin lần đầu xuất hiện mặt ngửa là \(\frac{1}{2}\).

+) Xác suất khi gieo 1 đồng xu fair coin lần hai xuất hiện mặt ngửa là \(\frac{1}{2}\).

Vậy xác suất để lần 1 xuất hiện mặt ngửa và lần hai ngửa là \(\frac{3}{4}.\frac{1}{2}.\frac{1}{2} = \frac{3}{{16}}\).

TH2: Lần 1 chọn được đồng xu double-heađe coin.

Tương tự TH1

Xác suất để lần 1 xuất hiện mặt ngửa và lần hai ngửa là \(\frac{1}{4}.1.1 = \frac{1}{4}\).

\(P\left( {D \cap C} \right) = \frac{3}{{16}} + \frac{1}{4} = \frac{7}{{16}}\).

Vậy \(P\left( {D|C} \right) = \frac{{P\left( {D \cap C} \right)}}{{P\left( C \right)}} = \frac{{\frac{7}{{16}}}}{{\frac{5}{8}}} = \frac{7}{{10}}\).

Lời giải

Gọi \[A\] là biến cố “ Chọn nhân viên có trình độ đại học” .

Gọi \[B\] là biến cố “ Chọn nhân viên bị tinh giản biên chế thông qua phỏng vấn” .

Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \] nên \[P\left( A \right) = 0,65 \Rightarrow P\left( {\overline A } \right) = 0,35\].

Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là \[10\% \], nhóm cao đẳng là \[15\% \] nên \[P\left( {B|A} \right) = 0,1\] và \[P\left( {B|\overline A } \right) = 0,15\].

Chọn một nhân viên bất kỳ đã bị tinh giản thì xác suất để người này có trình độ đại học là \[P\left( {A|B} \right).\]

Theo công thức ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,65.0,1}}{{0,65.0,1 + 0,35.0,15}} = 0,55\].

Đáp án: 0,55 .

Câu 3

\(P\left( {\overline A |B} \right) = 0,5\).

\(P\left( {\overline A |B} \right) = 0,6\).

\(P\left( {\overline A |B} \right) = 0,3\).

\(P\left( {\overline A |B} \right) = 0,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP