Câu hỏi:

21/10/2024 322

Một cửa hàng có ba loại trái cây: táo, chuối và cam với tỉ lệ là 50% lượng hoa quả trong cửa hàng là táo, 30% là chuối và 20% là cam. Xác suất bị hỏng khi để qua ngày mai của táo là 5%, chuối là 10% và cam là 2%. Lấy ngẫu nhiên một quả trong cửa hàng. Tính xác suất quả đó bị hỏng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố: “Trái cây được chọn là táo”.

B là biến cố: “Trái cây được chọn là chuối”.

C là biến cố: “Trái cây được chọn là cam”.

D là biến cố: “Trái cây được chọn là quả hỏng”

Theo đề, ta có: P(A) = 0,5; P(B) = 0,3; P(C) = 0,2.

Xác suất để táo bị hỏng là: P(D | A) = 0,05.

Xác suất để chuối bị hỏng là: P(D | B) = 0,1.

Xác suất để cam bị hỏng là: P(D | C) = 0,02.

Xác suất để chọn được một quả bị hoảng là:

P(D) = P(D | A).P(A) + P(D | B).P(B) + P(D | C).P(C)

= 0,5.0,05 + 0,1.0,3 + 0,2.0,02 = 0,059.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Gọi B1 là biến cố: “Lô lấy ra là lô I”

B2 là biến cố: “Lô lấy ra là lô II”.

a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.

Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)

Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).

Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)

Vậy ý c đúng.

b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)

Vậy ý b đúng.

c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).

Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)

Vậy ý c đúng.

d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).

Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)

Vậy ý d sai.

Câu 2

Lời giải

Đáp án đúng là: C

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)

Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP