Câu hỏi:
21/10/2024 555Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng là 0,85 và 0,15. Do có nhiễu trên đường truyền nên \(\frac{1}{7}\) tín hiệu A bị méo và thu được tín hiệu B còn \(\frac{1}{8}\) tín hiệu B bị méo và thu được tín hiệu A. Giả sử đã thu được tín hiệu A, tính xác suất thu được đúng tín hiệu lúc phát.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi A là biến cố “Phát tín hiệu A”.
B là biến cố “Phát tín hiệu B”.
TA là biến cố: “Phát được tín hiệu A”.
TB là biến cố: “Phát được tín hiệu B”.
Theo đề bài, ta có: P(A) = 0,85; P(B) = 0,15; P(TB | A) = \(\frac{1}{7}\); P(TA | B) = \(\frac{1}{8}\).
Suy ra P(TA | A) = 1 − \(\frac{1}{7}\) = \(\frac{6}{7}\).
Ta có: P(TA) = P(A). P(TA | A) + P(B). P(TB | B)
= 0,85. \(\frac{6}{7}\) + 0,15. \(\frac{1}{8}\) = \(\frac{{837}}{{1120}}.\)
Theo công thức Bayes, ta có:
P(A | TA) = \( = \frac{{P\left( A \right).P\left( {{T_A}|A} \right)}}{{P\left( {{T_A}} \right)}} = \frac{{0,85.\frac{6}{7}}}{{\frac{{837}}{{1120}}}} = \frac{{272}}{{279}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi B1 là biến cố: “Lô lấy ra là lô I”
B2 là biến cố: “Lô lấy ra là lô II”.
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.
Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)
Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).
Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)
Vậy ý c đúng.
b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)
Vậy ý b đúng.
c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).
Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)
Vậy ý c đúng.
d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).
Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)
Vậy ý d sai.
Lời giải
Đáp án đúng là: C
Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)
Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.