Câu hỏi:

23/10/2024 53

Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Số cách chọn 4 đỉnh của đa giác là \(C_{20}^4\) nên \(|\Omega | = C_{20}^4\).

Do hình chữ nhật nội tiếp trong đường tròn tâm \(O\) có hai đường chéo đi qua tâm \(O\) nên mỗi hình chữ nhật có 4 đỉnh là 4 đỉnh của đa giác ứng với 1 cách chọn hai đường chéo đi qua tâm \(O\) của đa giác.

Mà đa giác có 10 đường chéo đi qua tâm \(O\) nên có \(C_{10}^2\) hình chữ nhật.

Gọi \(A\) là biến cố: "4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật" \( \Rightarrow \left| {{\Omega _A}} \right| = C_{10}^2\).

Vậy xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật là \(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{|\Omega |}} = \frac{{C_{10}^2}}{{C_{20}^4}} = \frac{3}{{323}}\).

 Chọn D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai vị trí A, B cách nhau 615 m, cùng nằm về một phía bờ sông như hình vẽ. Khoảng cách từ A và từ B đến bờ sông lần lượt là 118 m và 487 m. Một người đi từ A đến bờ sông để lấy nước mang về B. Đoạn đường ngắn nhất mà người đó có thể đi là (Kết quả được làm tròn đến hàng đơn vị). (ảnh 1)

Cho hai vị trí A, B cách nhau 615 m, cùng nằm về một phía bờ sông như hình vẽ. Khoảng cách từ A và từ B đến bờ sông lần lượt là 118 m và 487 m. Một người đi từ A đến bờ sông để lấy nước mang về B. Đoạn đường ngắn nhất mà người đó có thể đi là

(Kết quả được làm tròn đến hàng đơn vị).

Xem đáp án » 23/10/2024 1,925

Câu 2:

Ứng dụng nào sau đây không phải của axit sunfuric? 

Xem đáp án » 30/06/2024 998

Câu 3:

Phần tư duy khoa học / giải quyết vấn đề

Đáy tàu đệm từ được làm từ 

Xem đáp án » 30/06/2024 683

Câu 4:

Xét những tờ giấy hình chữ nhật, kẻ ca-rô cỡ m × n ô vuông, một cách phân chia “tốt” được xác định khi ta chỉ dùng những dòng kẻ có sẵn chia tờ giấy thành những phần bằng nhau sao cho mỗi phần đều là những hình vuông cỡ p × p (p 2) ô. Chẳng hạn, ở hình dưới, bằng những dòng kẻ được tô màu xanh, ta xác định một cách phân chia “tốt” với m = 9, n = 12, p = 3.

Xét những tờ giấy hình chữ nhật, kẻ ca-rô cỡ m × n ô vuông, một cách phân chia “tốt” được xác định khi ta chỉ dùng những dòng kẻ có sẵn chia tờ giấy thành những phần bằng nhau sao cho mỗi phần đều là những hình vuông cỡ p × p (p ≥ 2) ô. Chẳng hạn, ở hình dưới, bằng những dòng kẻ được tô màu xanh, ta xác định một cách phân chia “tốt” với m = 9, n = 12, p = 3. (ảnh 1)

Số cách phân chia “tốt” đối với một tờ giấy ca-rô cỡ 120 × 300 là

Xem đáp án » 23/10/2024 656

Câu 5:

Mục đích chính của văn bản trên là gì? 

Xem đáp án » 29/06/2024 575

Câu 6:

Phương trình phản ứng điều chế este vinyl axetat là

Xem đáp án » 30/06/2024 563

Câu 7:

Thông tin nào sau đây KHÔNG được đề cập đến trong văn bản?

 

Xem đáp án » 30/06/2024 552

Bình luận


Bình luận