Câu hỏi:
23/10/2024 1,102
Cho đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\), bán kính \(R = 86\;{\rm{cm}}\) và một điểm \({\rm{A}}\) nằm trên đường tròn \(\left( {{C_1}} \right)\). Đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2}\) và đường kính \({I_1}A\), đường tròn \(\left( {{C_3}} \right)\) có tâm \({I_3}\) và đường kính \({I_2}A \ldots \) đường tròn \(\left( {{C_n}} \right)\) có tâm \({I_n}\) và đường kính \({I_{n - 1}}A, \ldots \) Gọi \({S_1},{S_2},{S_3}, \ldots ,{S_n} \ldots \) lần lượt là diện tích của các hình tròn \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right), \ldots ,\left( {{C_n}} \right), \ldots \) và \(S = {S_1} + {S_2} + \ldots + {S_6}\). Khi đó, giá trị \(S\) xấp xỉ bằng
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đường tròn \(\left( {{C_1}} \right)\) có bán kính \({R_1} = {I_1}A = R\) và \({S_1} = \pi {R^2}\).
Đường tròn \(\left( {{C_2}} \right)\) có bán kính \({R_2} = {I_2}A = \frac{{{I_1}A}}{2} = \frac{R}{2}\) và \({S_2} = \pi R_2^2 = \pi {\left( {\frac{R}{2}} \right)^2} = \frac{{\pi R}}{4} = \frac{{{S_1}}}{4}\).
Đường tròn \(\left( {{C_3}} \right)\) có bán kính \({R_3} = {I_3}A = \frac{{{I_2}A}}{2} = \frac{R}{4}\) và \({S_3} = \pi R_3^2 = \pi {\left( {\frac{R}{4}} \right)^2} = \pi \frac{{{R^2}}}{{16}} = \frac{{{S_2}}}{4}\).
Đường tròn \(\left( {{C_n}} \right)\) có bán kính \({R_n} = {I_n}A = \frac{{{I_{n - 1}}A}}{2} = \frac{R}{{{2^{n - 1}}}}\) và \({S_n} = \pi R_n^2 = \pi {\left( {\frac{R}{{{2^{n - 1}}}}} \right)^2} = \pi \frac{{{R^2}}}{{{2^{2(n - 1)}}}} = \frac{{{S_{n - 1}}}}{4}\).
Vậy các đường tròn \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right), \ldots ,\left( {{C_n}} \right), \ldots \) có diện tích \({S_1},{S_2},{S_3}, \ldots ,\left( {{S_n}} \right), \ldots \) lập thành một cấp số nhân với \({u_1} = {S_1} = \pi {R^2} = \pi {.86^2} \approx 23235\;{\rm{c}}{{\rm{m}}^2}\), công bội \(q = \frac{1}{4}\).
Vậy \(S = {S_1} + {S_2} + \ldots + {S_6} = \frac{{{u_1}\left( {{q^6} - 1} \right)}}{{q - 1}} = \frac{{23235\left( {{{\left( {\frac{1}{4}} \right)}^6} - 1} \right)}}{{\frac{1}{4} - 1}} \approx 30973\,\,\;{\rm{c}}{{\rm{m}}^2}\).
Chọn C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:
\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)
Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :
\(f(x) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{(492 - x)}^2} + {{487}^2}} \) với \(x \in [0;492]\)
Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.
\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}} = (492 - x)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x = - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow x = \frac{{58056}}{{605}}\)
Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).
Chọn B
Lời giải
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.