Câu hỏi:
23/10/2024 769
Cho khối tứ diện SABC, M và \(N\) là các điểm thuộc các cạnh SA và SB sao cho \(MA = 2SM,\,\,SN = 2NB\), \((\alpha )\) là mặt phẳng qua MN và song song với SC. Kí hiệu \(\left( {{H_1}} \right)\) và \(\left( {{H_2}} \right)\) là các khối đa diện có được khi chia khối tứ diện SABC bởi mặt phẳng \((\alpha )\), trong đó \(\left( {{H_1}} \right)\) chứa điểm \(S,\) \(\left( {{H_2}} \right)\) chứa điểm \(A;\)\({V_1}\) và \({V_2}\) lần lượt là thể tích của \(\left( {{H_1}} \right)\) và \(\left( {{H_2}} \right)\). Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải:

Mặt phẳng (α) qua MN và song song với SC cắt BC và AC lần lượt tại P và Q thỏa mãn MQ//SC và NP//SC.
Áp dụng định lí Ta - lét, ta suy ra:
CP = 2BP; AQ = 2QC; AM = 2MS; SN = 2NB.
Gọi V là thể tích của khối tứ diện SABC.
Xét \({V_2} = {V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{Q.AMN}}\).
\(\frac{{{V_2}}}{V} = \frac{{{V_{N.ABPQ}}}}{V} + \frac{{{V_{Q.AMN}}}}{V}\)
\(\frac{{{V_{N.ABPQ}}}}{V} = \left( {1 - \frac{{CQ}}{{CA}}.\frac{{CP}}{{CB}}} \right).\frac{{BN}}{{BS}} = \left( {1 - \frac{1}{3}.\frac{2}{3}} \right).\frac{1}{3} = \frac{7}{{27}}\)
\(\frac{{{V_{Q.AMN}}}}{V} = \frac{2}{3}.\frac{2}{3}.\frac{2}{3} = \frac{8}{{27}}\)
Vậy \(\frac{{{V_2}}}{V} = \frac{5}{9} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{4}{5}\).
Chọn A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:
\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)
Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :
\(f(x) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{(492 - x)}^2} + {{487}^2}} \) với \(x \in [0;492]\)
Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.
\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}} = (492 - x)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x = - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow x = \frac{{58056}}{{605}}\)
Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).
Chọn B
Lời giải
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.