Câu hỏi:
23/10/2024 163
Trong không gian Oxyz, cho điểm \(E(2;1;3)\), mặt phẳng \((P):2x + 2y - z - 3 = 0\) và mặt cầu \((S)\): \({(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \(\Delta \) là đường thẳng đi qua \(E\), nằm trong mặt phẳng \((P)\) và cắt \((S)\) tại hai điểm A, B có khoảng cách nhỏ nhất.
Đúng
Sai
Điểm E nằm ngoài mặt cầu (S).
Δ có một vectơ chỉ phương là \[\overrightarrow u = ( - 1;1;0)\].
A, B nằm trên đường tròn giao tuyến có tâm là hình chiếu vuông góc của I lên (P).
Trong không gian Oxyz, cho điểm \(E(2;1;3)\), mặt phẳng \((P):2x + 2y - z - 3 = 0\) và mặt cầu \((S)\): \({(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \(\Delta \) là đường thẳng đi qua \(E\), nằm trong mặt phẳng \((P)\) và cắt \((S)\) tại hai điểm A, B có khoảng cách nhỏ nhất.
Đúng |
Sai |
|
Điểm E nằm ngoài mặt cầu (S). |
||
Δ có một vectơ chỉ phương là \[\overrightarrow u = ( - 1;1;0)\]. |
||
A, B nằm trên đường tròn giao tuyến có tâm là hình chiếu vuông góc của I lên (P). |
Quảng cáo
Trả lời:
Đáp án
Đúng |
Sai |
|
Điểm E nằm ngoài mặt cầu (S). |
X | |
Δ có một vectơ chỉ phương là \[\overrightarrow u = ( - 1;1;0)\]. |
X | |
A, B nằm trên đường tròn giao tuyến có tâm là hình chiếu vuông góc của I lên (P). |
X |
Hướng dẫn giải:
![Trong không gian Oxyz, cho điểm \(E(2;1;3)\), mặt phẳng \((P):2x + 2y - z - 3 = 0\) và mặt cầu \((S)\): \({(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \(\Delta \) là đường thẳng đi qua \(E\), nằm trong mặt phẳng \((P)\) và cắt \((S)\) tại hai điểm A, B có khoảng cách nhỏ nhất. Đúng Sai Điểm E nằm ngoài mặt cầu (S). Δ có một vectơ chỉ phương là \[\overrightarrow u = ( - 1;1;0)\]. A, B nằm trên đường tròn giao tuyến có tâm là hình chiếu vuông góc của I lên (P). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid11-1729654600.png)
Mặt cầu \((S):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\), có tâm I(3;2;5) và bán kính R = 6.
Ta có: \(\overrightarrow {EI} = (1;1;2) \Rightarrow EI = |\overrightarrow {EI} | = \sqrt {{1^2} + {1^2} + {2^2}} = \sqrt 6 < 6 = R\). Do đó điểm E nằm trong mặt cầu (S).
Ta lại có: E ∈ (P) và \[\left\{ \begin{array}{l}E \in \Delta \\\Delta \subset \left( P \right)\end{array} \right.\]
Nên giao điểm của (Δ) và (S) nằm trên đường tròn giao tuyến (C) tâm K của mặt phẳng (P) và mặt cầu (S), trong đó K là hình chiếu vuông góc của I lên mặt phẳng (P).
Giả sử Δ ∩ (S) = {A;B}. Độ dài AB nhỏ nhất khi và chỉ khi d(K,Δ) lớn nhất.
Gọi F là hình chiếu của K trên (Δ) khi đó d(K;Δ) = KF ≤ KE.
Dấu bằng xảy ra khi và chỉ khi F ≡ E.
Ta có \(\left\{ \begin{array}{l}IK \bot \left( P \right)\\KE \bot \Delta \end{array} \right. \Rightarrow \left\{ \begin{array}{l}IK \bot \Delta \\KE \bot \Delta \end{array} \right. \Rightarrow IE \bot \Delta \).
Ta có: \(\left[ {{{\vec n}_{(P)}},\overrightarrow {EI} } \right] = (5; - 5;0)\), cùng phương với \[\overrightarrow u = (1; - 1;0).\]
Vì \(\left\{ \begin{array}{l}\Delta \subset \left( P \right)\\\Delta \bot IE\end{array} \right.\) nên Δ có một vectơ chỉ phương là \[\overrightarrow u = (1; - 1;0).\]
Suy ra phương trình đường thẳng Δ:\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 3\end{array} \right.\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:
\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)
Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :
\(f(x) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{(492 - x)}^2} + {{487}^2}} \) với \(x \in [0;492]\)
Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.
\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}} = (492 - x)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x = - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow x = \frac{{58056}}{{605}}\)
Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).
Chọn B
Lời giải
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.