Câu hỏi:
23/10/2024 272
Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình sau có nghiệm: \(m{\log _{3 - \sqrt {4 - x} }}3 \ge x\sqrt x + \sqrt {x + 12} \).
Quảng cáo
Trả lời:
Hướng dẫn giải:
ĐK: \(\left\{ \begin{array}{l}3 - \sqrt {4 - x} > 0\\3 - \sqrt {4 - x} \ne 1\\x \ge 0\\x + 12 \ge 0\\4 - x \ge 0\end{array} \right. \Leftrightarrow 0 \le x \le 4\).
Nhận xét: \(3 - \sqrt {4 - x} > 3 - \sqrt {4 - 0} = 1 \Rightarrow {\log _{3 - \sqrt {4 - x} }}3 > {\log _{3 - \sqrt {4 - x} }}1 = 0\).
\(m{\log _{3 - \sqrt {4 - x} }}3 \ge x\sqrt x + \sqrt {x + 12} \Leftrightarrow m \ge \frac{{x\sqrt x + \sqrt {x + 12} }}{{{{\log }_{3 - \sqrt {4 - x} }}3}} \Leftrightarrow m \ge \left( {x\sqrt x + \sqrt {x + 12} } \right).{\log _3}\left( {3 - \sqrt {4 - x} } \right)\)
Đặt \(f(x) = \left( {x\sqrt x + \sqrt {x + 12} } \right).{\log _3}\left( {3 - \sqrt {4 - x} } \right)\)
\({f^\prime }(x) = \left( {\frac{3}{2}\sqrt x + \frac{2}{{2\sqrt {x + 12} }}} \right){\log _3}\left( {3 - \sqrt {4 - x} } \right) + \left( {x\sqrt x + \sqrt {x + 12} } \right).\frac{1}{{\left( {3 - \sqrt {4 - x} } \right)\ln 3.2\sqrt {4 - x} }}\)
Vì \(f'(x) > 0,\forall x \in (0;4) \Rightarrow f(x)\) tăng trên (0;4) ⇒ tập giá trị của f(x) là (0;12).
Vậy bất phương trình có nghiệm khi và chỉ khi m > 0.
Chọn C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:
\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)
Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :
\(f(x) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{(492 - x)}^2} + {{487}^2}} \) với \(x \in [0;492]\)
Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.
\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}} = (492 - x)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x = - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow x = \frac{{58056}}{{605}}\)
Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).
Chọn B
Lời giải
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.