Câu hỏi:
23/10/2024 2,150
Kéo thả số thích hợp vào ô trống
Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 3{t^2} + 20\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó.
a) Quãng đường vật đi được tính từ lúc xuất phát đến lúc vật đạt vận tốc lớn nhất bằng ... .
b) Quãng đường vật đi được từ lúc xuất phát đến lúc vật dừng hẳn bằng ....

Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 3{t^2} + 20\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó.
a) Quãng đường vật đi được tính từ lúc xuất phát đến lúc vật đạt vận tốc lớn nhất bằng ... .
b) Quãng đường vật đi được từ lúc xuất phát đến lúc vật dừng hẳn bằng ....Quảng cáo
Trả lời:
a) Quãng đường vật đi được tính từ lúc xuất phát đến lúc vật đạt vận tốc lớn nhất bằng 28m .
Ta có \(v(t) = s' = - \frac{3}{2}{t^2} + 6t\). Ta đi tìm \(\mathop {\max }\limits_{\left( {0; + \infty } \right)} v(t)\).
\(v'(t) = - 3t + 6 \Rightarrow v'(t) = 0 \Leftrightarrow t = 2\)
Bảng biến thiên:
Từ bảng biến thiên ta có:
\( + )\mathop {\max }\limits_{(0; + \infty )} v(t) = v(2) = 6.\)
Vậy quãng đường vật đi được đến lúc đạt vận tốc lớn nhất là: \(s = - \frac{1}{2}{.2^3} + {3.2^2} + 20 = 28\;{\rm{m}}\).
+ ) Vật dừng lại ở thời điểm \(t\) thỏa mãn \(t > 0\) và \(v(t) = 0 \Leftrightarrow - \frac{3}{2}{t^2} + 6t = 0 \Leftrightarrow t = 4\).
Quãng đường vật di chuyển được là: \(s(4) = 36\;{\rm{m}}\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.