Câu hỏi:
24/10/2024 160Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Cho hàm số \(y = \frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x\left( C \right)\). Số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) là _____, trong đó điểm có hoành độ \(\frac{{\pi a}}{b}\) với \(a = \)______, \(b = \)_____,\((a,b \in \mathbb{Z};b > 0;\left( {a;b} \right) = 1)\) nằm gần trục tung nhất.
Quảng cáo
Trả lời:
Cho hàm số \(y = \frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x\left( C \right)\). Số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) là 3 , trong đó điểm có hoành độ \(\frac{{\pi a}}{b}\) với \(a = \)-1 , \(b = \)4 ,\((a,b \in \mathbb{Z};b > 0;\left( {a;b} \right) = 1)\) nằm gần trục tung nhất.
Giải thích
Điều kiện xác định của hàm số \(\left( C \right):\left( {\begin{array}{*{20}{c}}{{\rm{cos}}x \ne \pm 1}\\{{\rm{sin}}x \ne 0}\end{array}} \right) \Leftrightarrow x \ne k\pi \left( {k, \in ,\mathbb{Z}} \right)\).
Xét phương trình hoành độ giao điểm:
\(\frac{{{\rm{sin}}x}}{{1 + {\rm{cos}}x}} + \frac{1}{{1 - {\rm{cos}}x}} + {\rm{cot}}x = 2\,\,\left( * \right)\)
\( \Leftrightarrow \frac{{{\rm{sin}}x\left( {1 - {\rm{cos}}x} \right) + 1 + {\rm{cos}}x}}{{{\rm{si}}{{\rm{n}}^2}x}} + \frac{{{\rm{cos}}x}}{{{\rm{sin}}x}} = 2\)
\( \Rightarrow {\rm{sin}}x - {\rm{sin}}x{\rm{cos}}x + 1 + {\rm{cos}}x + {\rm{sin}}x{\rm{cos}}x = 2{\rm{si}}{{\rm{n}}^2}x\)
\( \Leftrightarrow {\rm{sin}}x + {\rm{cos}}x + 1 - 2{\rm{si}}{{\rm{n}}^2}x = 0\)
\( \Leftrightarrow {\rm{sin}}x + {\rm{cos}}x + {\rm{cos}}2x = 0\)
\( \Leftrightarrow \left( {{\rm{sin}}x + {\rm{cos}}x} \right)\left( {1 + {\rm{cos}}x - {\rm{sin}}x} \right) = 0\)
\[ \Leftrightarrow \left( {\begin{array}{*{20}{c}}{\sin x + \cos x = 0}\\{1 + \cos x - \sin x = 0}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{\tan x = - 1}\\{\sin \left( {x, - ,\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k\pi (t,m)}\\{x = \frac{\pi }{2} + k2\pi (t,m)}\\{x = \pi + k2\pi (L)}\end{array}} \right)(k, \in ,\mathbb{Z})\]
Xét \( - \pi \le - \frac{\pi }{4} + k\pi \le \pi \Leftrightarrow - \frac{3}{4} \le k \le \frac{5}{4} \Leftrightarrow k \in \left\{ {0;1} \right\}\).
Xét \( - \pi \le \frac{\pi }{2} + k2\pi \le \pi \Leftrightarrow - \frac{3}{4} \le k \le \frac{1}{4} \Leftrightarrow k = 0\).
Vậy có 3 nghiệm của \(\left( {\rm{*}} \right)\) trên \(\left[ { - \pi ;\pi } \right]\) hay số giao điểm của đồ thị hàm số \(\left( C \right)\) với đường thẳng \(y = 2\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) là 3 , trong đó điểm có hoành độ \(\frac{{ - \pi }}{4}\) nằm gần trục tung nhất \( \Rightarrow a = - 1;b = 4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phát biểu |
ĐÚNG |
SAI |
Có \(C_{12}^6\) cách chọn ngẫu nhiên 6 quyển sách từ 12 quyển để tặng cho 6 học sinh, mỗi học sinh một quyển sách. |
¡ |
¤ |
Có \({\rm{C}}_3^3.{\rm{C}}_9^3\) cách tặng 3 quyển sách Hóa và 3 quyển sách Toán hoặc Lí. |
¡ |
¤ |
Có 579600 cách tặng mà sau khi tặng xong, mỗi loại sách còn lại ít nhất một quyển |
¤ |
¡ |
Số cách tặng ngẫu nhiên là: \(A_{12}^6\).
Ta tính số cách tặng mà sau khi tặng xong, mỗi loại sách đều hết.
- Số cách tặng 5 quyển sách Toán và 1 quyển Lí hoặc Hóa là: \({\rm{C}}_5^5{\rm{.C}}_7^1.6!\)
- Số cách tặng 4 quyển sách Lí và 2 quyển Toán hoặc Hóa là: \({\rm{C}}_4^4{\rm{.C}}_8^2.6!\)
- Số cách tặng 3 quyển sách Hóa và 3 quyển Toán hoặc Lí là: \(C_3^3.C_9^3.6!\)
Vậy số cách tặng mà sau khi tặng xong, mỗi loại sách còn lại ít nhất một quyển là:
\[\left. {A_{12}^6 - \left( {{\rm{C}}_5^5{\rm{.C}}_7^1.6! + {\rm{C}}_4^4{\rm{.C}}_8^2.6! + {\rm{C}}_3^3{\rm{.C}}_9^3.6!} \right.} \right) = 579600\].
Lời giải
Sai, vì: Chưng cất là phương pháp tách chất dựa vào sự khác nhau về nhiệt độ sôi của chất (ở một áp suất nhất định).
Do đó, khi tách hai chất lỏng tan vào nhau bằng phương pháp chưng cất, tính chất vật lí được quan tâm là nhiệt độ sôi của các chất.
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận