Câu hỏi:

24/10/2024 4,777 Lưu

Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích 1000 lít bằng inox để chứa nước, tính bán kính R của hình trụ đó sao cho diện tích toàn phần của bồn chứa có giá trị nhỏ nhất. 

A. \(R = \sqrt[3]{{\frac{2}{\pi }}}\)
B. \(R = \sqrt[3]{{\frac{1}{\pi }}}\) 
C. \(R = \sqrt[3]{{\frac{1}{{2\pi }}}}\)
D. \(R = \sqrt[3]{{\frac{3}{{2\pi }}}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải

- Gọi h là chiều cao của hình trụ, biểu diễn h theo R.

- Biểu diễn diện tích toàn phần theo R.

- Sử dụng BĐT Cauchy để tìm giá trị min.

Diện tích hình trụ, thể tích khối trụ

Lời giải

Ta có 1000 lít  = 1 m3.

Gọi h là chiều cao của hình trụ ta có \(K = \pi {R^2}h = 1 \Rightarrow h = \frac{1}{{\pi {R^2}}}\).

Diện tích toàn phần là: \({S_{tp}} = 2\pi {R^2} + 2\pi Rh = 2\pi {R^2} + 2\pi R\frac{1}{{\pi {R^2}}} = 2\pi {R^2} + \frac{2}{R}\)

\( = 2\left( {\pi {R^2} + \frac{1}{{2R}} + \frac{1}{{2R}}} \right) \ge 2.3\sqrt[3]{{\pi {R^2}.\frac{1}{{2R}}.\frac{1}{{2R}}}} = 6\sqrt[3]{{\frac{\pi }{4}}}\)

Dấu "=" xảy ra khi và chỉ khi \(\pi {R^2} = \frac{1}{{2R}} \Leftrightarrow R = \sqrt[3]{{\frac{1}{{2\pi }}}}\)

 Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao 5,84 km. (Làm tròn đến chữ số thập phân thứ hai)

b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi cao hơn là A, ngọn núi thấp hơn là B. Độ cao chênh lệch giữa hai ngọn núi là 1,88km. (Làm tròn đến chữ số thập phân thứ hai)

Phương pháp giải

Lời giải

a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) là:

\(h =  - 19,4.\log \frac{{\frac{1}{2}{P_0}}}{{{P_0}}} =  - 19,4.\log \frac{1}{2} \approx 5,84\,\,({\rm{km}}).\)

b) Độ cao của ngọn núi A là: \({h_A} =  - 19,4.\log \frac{{{P_A}}}{{{P_0}}}\).

Độ cao của ngọn núi B là: \({h_B} =  - 19,4.\log \frac{{{P_B}}}{{{P_0}}}\).

Áp suất không khí tại đỉnh của ngọn núi \(A\) bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi \(B\) nên ta có:\({P_A} = \frac{4}{5}{P_B} \Leftrightarrow \frac{{{P_A}}}{{{P_B}}} = \frac{4}{5}{\rm{. }}\)

Ta có:

\(\begin{array}{l}{h_A} - {h_B} = \left( { - 19,4.\log \frac{{{P_A}}}{{{P_0}}}} \right) - \left( { - 19,4.\log \frac{{{P_B}}}{{{P_0}}}} \right) =  - 19,4.\log \frac{{{P_A}}}{{{P_0}}} + 19,4.\log \frac{{{P_B}}}{{{P_0}}}\\ =  - 19,4\log \left( {\frac{{{P_A}}}{{{P_0}}}:\frac{{{P_B}}}{{{P_0}}}} \right) =  - 19,4\log \frac{{{P_A}}}{{{P_B}}} =  - 19,4\log \frac{4}{5} \approx 1,88\,\,({\rm{km}}).\end{array}\)

Vậy ngọn núi \(A\) cao hơn ngọn núi \(B\) là \(1,88\;{\rm{km}}\).

 

Lời giải

Phương pháp giải

Lời giải

Ta có \(\frac{{{{\rm{u}}_{{\rm{n}} + 1}}}}{{{{\rm{u}}_{\rm{n}}}}} = \frac{{ - \frac{{{{\rm{u}}_{\rm{n}}}}}{5}}}{{{{\rm{u}}_{\rm{n}}}}} =  - \frac{1}{5}\)  do đó dãy  \(\left( {{{\rm{u}}_{\rm{n}}}} \right),\,\,{\rm{n}} \in \mathbb{N}*\) là một cấp số nhân lùi vô hạn có \({{\rm{u}}_1} = 3,\;{\rm{d}} =  - \frac{1}{5}\).

Suy ra \(\lim {{\rm{S}}_{\rm{n}}} = \frac{{{{\rm{u}}_1}}}{{1 - {\rm{q}}}} = \frac{3}{{1 + \frac{1}{5}}} = \frac{5}{2}\).

Chọn D 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nguyên nhân và hạn chế của chi phí logistics cao ở Việt Nam.

B. Hiệu quả của các phương thức vận chuyển và dịch vụ logistics.

C. Cách giảm chi phí logistics cho doanh nghiệp xuất nhập khẩu.

D. So sánh chi phí logistics của Việt Nam và các nước khác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP