Câu hỏi:

24/10/2024 1,126

Có bao nhiêu số tự nhiên có 3 chữ số có dạng \(\overline {abc} \) thỏa mãn \(a,b,c\) là độ dài 3 cạnh của một tam giác cân?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi độ dài cạnh bên và cạnh đáy của tam giác cân là \(x,y\) (thỏa mãn \(x,y\) là các chữ số)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{1 \le x \le 9}\\{1 \le y \le 9}\\{1 \le y < 2x}\end{array}} \right.\)

TH1: \(\left\{ {\begin{array}{*{20}{l}}{1 \le y \le 9}\\{5 \le x \le 9}\end{array} \Rightarrow } \right.\) có \(9.5 = 45\) cặp số \(\left( {x;y} \right)\).

TH2: \(\left\{ {\begin{array}{*{20}{l}}{1 \le x \le 4}\\{x = i}\\{1 \le y \le 2i - 1}\end{array}} \right.\)

Với mỗi giá trị của \(i\) có \(2i - 1\) cặp số thỏa mãn, do đó ta có:

\(\left( {2.1 - 1} \right) + \left( {2.2 - 1} \right) + \left( {2.3 - 1} \right) + \left( {2.4 - 1} \right) = 16\) cặp số \(\left( {x;y} \right)\)

Suy ra có 61 cặp số \(\left( {x;y} \right)\) mà với mỗi cặp, ta có thể viết số có 3 chữ số trong đó có 2 chữ số \(x\) và 1

chữ số \(y\). Trong 61 cặp số này có:

+ 9 cặp \(x = y\) thì viết được 9 số.

+ 52 cặp \(x \ne y\) thì mỗi cặp viết được 3 số \(\left( {\overline {xxy} ,\overline {xyx} ,\overline {yxx} } \right)\) nên có \(52.3 = 156\) số.

Vậy tất cả viết được 165 số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

¤

¡

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

¡

¤

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

¡

¤

Giải thích

Ta có: \(f(x) = \left\{ \begin{array}{l}x - 2\,\,khi\,\,x > 1\\a\,\,khi\,\,x = 1\\2 - x\,\,khi\,\,x < 1{\rm{\;}}\end{array} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left( {2 - x} \right) = 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\).

Ta có: \(\mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right) = \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} \left( {x - 2} \right) =  - 1\) và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {{\rm{lim}}}\limits_{x \to {1^ + }} f\left( x \right)\) nên hàm số không liên tục tại \(x = 1\).

Câu 2

Lời giải

Ánh sáng khả kiến là các bức xạ điện từ có bước sóng nằm trong vùng quang phổ nhìn thấy được bằng mắt thường của con người.

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP