Câu hỏi:
12/11/2024 325
Trong không gian \(Oxyz\), cho \(M\left( {3;1;1} \right),N\left( {4;3;4} \right)\) và đường thẳng \(d:\frac{{x - 7}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 9}}{1}\).
Mỗi phát biểu sau là đúng hay sai?
Phát biểu
ĐÚNG
SAI
\(MN\) và \(d\) là hai đường thẳng song song với nhau.
Điểm \(I \in d\) để \(IM + IN\) nhỏ nhất có tọa độ \(I\left( {\frac{{17}}{3};\frac{{17}}{3};\frac{{23}}{3}} \right).\)
Trong không gian \(Oxyz\), cho \(M\left( {3;1;1} \right),N\left( {4;3;4} \right)\) và đường thẳng \(d:\frac{{x - 7}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 9}}{1}\).
Mỗi phát biểu sau là đúng hay sai?
Phát biểu |
ĐÚNG |
SAI |
\(MN\) và \(d\) là hai đường thẳng song song với nhau. |
||
Điểm \(I \in d\) để \(IM + IN\) nhỏ nhất có tọa độ \(I\left( {\frac{{17}}{3};\frac{{17}}{3};\frac{{23}}{3}} \right).\) |
Quảng cáo
Trả lời:
Phát biểu | ĐÚNG | SAI |
\(MN\) và \(d\) là hai đường thẳng song song với nhau. | X | |
Điểm \(I \in d\) để \(IM + IN\) nhỏ nhất có tọa độ \(I\left( {\frac{{17}}{3};\frac{{17}}{3};\frac{{23}}{3}} \right).\) | X |
Giải thích
Ta có \(\overrightarrow {MN} = \left( {1;2;3} \right)\); \(d\) có vectơ chỉ phương \(\vec u = \left( {1; - 2;1} \right)\) nên \(\overrightarrow {MN} .\vec u = 0\) suy ra \(MN \bot d\).Mặt phẳng \(\left( P \right)\) qua \(MN\) vuông góc với \(d\) có phương trình \(x - 2y + z - 2 = 0\).Gọi \(E = d \cap \left( P \right)\).Ta có: \(IM \ge EM;IN \ge EN \Rightarrow IM + IN \ge EM + EN\)Để \(IM + IN\) nhỏ nhất thì điểm \(I \equiv E\) nên \(I\left( {\frac{{17}}{3};\frac{{17}}{3};\frac{{23}}{3}} \right)\).- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.
Giải thích
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) như hình vẽ Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) _______. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/11/blobid12-1731398079.png)
Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).
Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Đáp án
Mức cường độ âm thấp nhất mà tai người có thể nghe được là 0 B.
Khi mức cường độ âm đạt đến ngưỡng đau \(\left( {13B} \right)\) thì cường độ âm là 10 \({\rm{W}}/{{\rm{m}}^2}\).
Giải thích
Cường độ âm thấp nhất là \(I = {I_0}\). Khi đó, mức cường độ âm thấp nhất mà tai người có thể nghe được là \(L = {\rm{log}}1 = 0\left( B \right)\).
Khi \(L = 13\left( B \right)\) thì \(I = {10^L}{I_0} = {10^{13}}{.10^{ - 12}} = 10\left( {{\rm{W}}/{{\rm{m}}^2}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.