Câu hỏi:
12/11/2024 1,079
Có 20 tấm thẻ được đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 6 tấm thẻ. Xác suất để trong 6 tấm thẻ được chọn ra có 3 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 4 gần nhất với kết quả nào sau đây?
Quảng cáo
Trả lời:
Giải thích
Số phần tử của không gian mẫu là \(n\left( {\rm{\Omega }} \right) = C_{30}^6\).
Trong 30 tấm thẻ có 15 tấm thẻ mang số lẻ, 7 tấm thẻ mang số chẵn và chia hết cho 4,8 tấm thẻ mang số chẵn và không chia hết cho 4.
Gọi \(A\) là biến cố cần tính xác suất, ta có \(n\left( A \right) = C_{15}^3.C_8^2.C_7^1\).
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{C_{15}^3.C_8^2.C_7^1}}{{C_{30}^6}} = \frac{{196}}{{1305}} \approx 15{\rm{\% }}\).
Chọn C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.
Giải thích
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\) và có đồ thị là đường gấp khúc \(ABC\) như hình vẽ Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) _______. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/11/blobid12-1731398079.png)
Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).
Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Đáp án
Mức cường độ âm thấp nhất mà tai người có thể nghe được là 0 B.
Khi mức cường độ âm đạt đến ngưỡng đau \(\left( {13B} \right)\) thì cường độ âm là 10 \({\rm{W}}/{{\rm{m}}^2}\).
Giải thích
Cường độ âm thấp nhất là \(I = {I_0}\). Khi đó, mức cường độ âm thấp nhất mà tai người có thể nghe được là \(L = {\rm{log}}1 = 0\left( B \right)\).
Khi \(L = 13\left( B \right)\) thì \(I = {10^L}{I_0} = {10^{13}}{.10^{ - 12}} = 10\left( {{\rm{W}}/{{\rm{m}}^2}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.