Câu hỏi:
12/11/2024 405Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \({I_1}\left( {1;0;1} \right)\), bán kính \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \({I_2}\left( {1;3;5} \right)\), bán kính \({R_2} = 1\). Đường thẳng \(d\) thay đổi nhưng luôn tiếp xúc với \(\left( {{S_1}} \right),\left( {{S_2}} \right)\) lần lượt tại \(A\) và \(B\).
Giá trị nhỏ nhất của đoạn thẳng \(AB\) bằng _______.
Giá trị lớn nhất của đoạn thẳng \(AB\) bằng _______.
Quảng cáo
Trả lời:
Đáp án
Giá trị nhỏ nhất của đoạn thẳng \(AB\) bằng 4.
Giá trị lớn nhất của đoạn thẳng \(AB\) bằng \(2\sqrt 6 \).
Giải thích
Ta có \({I_1}{I_2} = 5 > {R_1} + {R_2} = 3 \Rightarrow \) Mặt cầu \(\left( {{S_1}} \right)\) và \(\left( {{S_2}} \right)\) ngoài nhau.
Khi đó, \({I_1}A \bot d,{I_2}B \bot d \Rightarrow {I_1}A\parallel {I_2}B\).
Ta có: \({I_1}I_2^2 = {\left( {\overrightarrow {{I_1}A} + \overrightarrow {AB} + \overrightarrow {B{I_2}} } \right)^2} = R_1^2 + A{B^2} + R_2^2 + 2\overrightarrow {{I_1}A} .\overrightarrow {B{I_2}} \)
\( \Rightarrow A{B^2} = 20 + 2\overrightarrow {{I_1}A} .\overrightarrow {{I_2}B} = 20 + 2.2.1.{\rm{cos}}\left( {\overrightarrow {{I_1}A} ;\overrightarrow {{I_2}B} } \right)\)
Vậy \(A{B_{{\rm{max}}}} = 2\sqrt 6 \Leftrightarrow \overrightarrow {{I_1}A} \) cùng hướng với \(\overrightarrow {{I_2}B} \) và \(A{B_{{\rm{min}}}} = 4 \Leftrightarrow \overrightarrow {{I_1}A} \) ngược hướng với \(\overrightarrow {{I_2}B} \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Biết \(F\) là nguyên hàm của \(f\) thỏa mãn \(F\left( { - 1} \right) = - 1\). Giá trị của \(F\left( 4 \right) + F\left( 6 \right)\) bằng (1) __5__.
Giải thích
Từ đồ thị của hàm số ta xác định được \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{2}x + 2}&{{\rm{\;khi\;}}2 \le x \le 6}\end{array}} \right.\).
Do \(F\) là nguyên hàm của \(f\) nên \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + {C_1}}&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x + {C_2}}&{{\rm{khi\;}}2 \le x \le 6\,\,\,}\end{array}} \right.\).
Ta có \(F\left( { - 1} \right) = - 1 \Leftrightarrow - 1 + {C_1} = - 1 \Leftrightarrow {C_1} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right] \Rightarrow F\left( x \right)\) liên tục trên đoạn \(\left[ { - 1;6} \right]\).
\( \Rightarrow F\left( x \right)\) liên tục tại \(x = 2\)
Suy ra \(F\left( x \right) = \left\{ {\begin{array}{*{20}{c}}x&{{\rm{\;khi\;}} - 1 \le x < 2}\\{ - \frac{1}{4}{x^2} + 2x - 1}&{{\rm{khi\;}}2 \le x \le 6\,\,}\end{array}} \right.\).
Vậy \(F\left( 4 \right) + F\left( 6 \right) = 5\).
Lời giải
Đáp án
Mức cường độ âm thấp nhất mà tai người có thể nghe được là 0 B.
Khi mức cường độ âm đạt đến ngưỡng đau \(\left( {13B} \right)\) thì cường độ âm là 10 \({\rm{W}}/{{\rm{m}}^2}\).
Giải thích
Cường độ âm thấp nhất là \(I = {I_0}\). Khi đó, mức cường độ âm thấp nhất mà tai người có thể nghe được là \(L = {\rm{log}}1 = 0\left( B \right)\).
Khi \(L = 13\left( B \right)\) thì \(I = {10^L}{I_0} = {10^{13}}{.10^{ - 12}} = 10\left( {{\rm{W}}/{{\rm{m}}^2}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận