Câu hỏi:
13/11/2024 455II. Thông hiểu
Lấy ngẫu nhiên hai viên bi từ một thùng có 4 bi xanh, 5 bi đỏ và 6 bi vàng. Số phần tử của không gian mẫu là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tổng số bi trong thùng là \(4 + 5 + 6 = 15\) (viên bi).
Số cách chọn ngẫu nhiên 1 viên bi là 15 cách chọn.
Số cách chọn ngẫu nhiên viên bi còn lại là 14 cách chọn.
Suy ra số cách lấy ngẫu nhiên hai viên bi từ thùng là \(15 \cdot 14 = 210\) (cách).
Tuy nhiên mỗi cách chọn đã bị tính 2 lần.
Do đó số phần tử của không gian mẫu là: \(\frac{{210}}{2} = 105\) (phần tử).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Bảng kết quả có thể xảy ra:
Hộp 1 Hộp 2 | 1 | 2 | 3 | 4 | 5 |
6 | 16 | 26 | 36 | 46 | 56 |
7 | 17 | 27 | 37 | 47 | 57 |
8 | 18 | 28 | 38 | 48 | 58 |
9 | 19 | 29 | 39 | 49 | 59 |
Không gian mẫu của phép thử là \(\Omega = \left\{ {16;\,\,26;\,\,36;...;\,\,49;\,\,59} \right\}\).
Do đó, không gian mẫu của phép thử có 20 phần tử.
Lời giải
Đáp án đúng là: D
Các kết quả có thể xảy ra được liệt kê trong bảng dưới đây:
Xúc xắc 1 Xúc xắc 2 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | \[\left( {1\,;\,\,1} \right)\] | \[\left( {2\,;\,\,1} \right)\] | \[\left( {3\,;\,\,1} \right)\] | \[\left( {4\,;\,\,1} \right)\] | \[\left( {5\,;\,\,1} \right)\] | \[\left( {6\,;\,\,1} \right)\] |
2 | \[\left( {1\,;\,\,2} \right)\] | \[\left( {2\,;\,\,2} \right)\] | \[\left( {3\,;\,\,2} \right)\] | \[\left( {4\,;\,\,2} \right)\] | \[\left( {5\,;\,\,2} \right)\] | \[\left( {6\,;\,\,2} \right)\] |
3 | \[\left( {1\,;\,\,3} \right)\] | \[\left( {2\,;\,\,3} \right)\] | \[\left( {3\,;\,\,3} \right)\] | \[\left( {4\,;\,\,3} \right)\] | \[\left( {5\,;\,\,3} \right)\] | \[\left( {6\,;\,\,3} \right)\] |
4 | \[\left( {1\,;\,\,4} \right)\] | \[\left( {2\,;\,\,4} \right)\] | \[\left( {3\,;\,\,4} \right)\] | \[\left( {4\,;\,\,4} \right)\] | \[\left( {5;{\rm{ }}4} \right)\] | \[\left( {6\,;\,\,4} \right)\] |
5 | \[\left( {1\,;\,\,5} \right)\] | \[\left( {2\,;\,\,5} \right)\] | \[\left( {3\,;\,\,5} \right)\] | \[\left( {4\,;\,\,5} \right)\] | \[\left( {5;{\rm{ }}5} \right)\] | \[\left( {6\,;\,\,5} \right)\] |
6 | \[\left( {1\,;\,\,6} \right)\] | \[\left( {2\,;\,\,6} \right)\] | \[\left( {3\,;\,\,6} \right)\] | \[\left( {4\,;\,\,6} \right)\] | \[\left( {5;{\rm{ }}6} \right)\] | \[\left( {6\,;\,\,6} \right)\] |
Có 36 kết quả có thể xảy ra tương ứng với các ô trong bảng.
Do 2 con xúc xắc cân đối và đồng chất nên khả năng xuất hiện các mặt là như nhau. Do đó các kết quả của phép thử có cùng khả năng xảy ra.
Có 5 kết quả thuận lợi cho biến cố là \[\left( {1\,;\,\,5} \right)\,;\,\,\left( {2\,;\,\,4} \right)\,;\,\,\left( {3\,;\,\,3} \right)\,;\,\,\left( {4\,;\,\,2} \right)\,;\,\,\left( {5\,;\,\,1} \right).\]
Vậy xác suất xảy ra của biến cố là \(P = \frac{5}{{36}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án