Câu hỏi:
13/11/2024 478II. Thông hiểu
Lấy ngẫu nhiên hai viên bi từ một thùng có 4 bi xanh, 5 bi đỏ và 6 bi vàng. Số phần tử của không gian mẫu là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tổng số bi trong thùng là \(4 + 5 + 6 = 15\) (viên bi).
Số cách chọn ngẫu nhiên 1 viên bi là 15 cách chọn.
Số cách chọn ngẫu nhiên viên bi còn lại là 14 cách chọn.
Suy ra số cách lấy ngẫu nhiên hai viên bi từ thùng là \(15 \cdot 14 = 210\) (cách).
Tuy nhiên mỗi cách chọn đã bị tính 2 lần.
Do đó số phần tử của không gian mẫu là: \(\frac{{210}}{2} = 105\) (phần tử).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Bảng kết quả có thể xảy ra:
Hộp 1 Hộp 2 | 1 | 2 | 3 | 4 | 5 |
6 | 16 | 26 | 36 | 46 | 56 |
7 | 17 | 27 | 37 | 47 | 57 |
8 | 18 | 28 | 38 | 48 | 58 |
9 | 19 | 29 | 39 | 49 | 59 |
Không gian mẫu của phép thử là \(\Omega = \left\{ {16;\,\,26;\,\,36;...;\,\,49;\,\,59} \right\}\).
Do đó, không gian mẫu của phép thử có 20 phần tử.
Lời giải
Đáp án đúng là: D
Các kết quả có thể xảy ra được liệt kê trong bảng dưới đây:
Xúc xắc 1 Xúc xắc 2 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | \[\left( {1\,;\,\,1} \right)\] | \[\left( {2\,;\,\,1} \right)\] | \[\left( {3\,;\,\,1} \right)\] | \[\left( {4\,;\,\,1} \right)\] | \[\left( {5\,;\,\,1} \right)\] | \[\left( {6\,;\,\,1} \right)\] |
2 | \[\left( {1\,;\,\,2} \right)\] | \[\left( {2\,;\,\,2} \right)\] | \[\left( {3\,;\,\,2} \right)\] | \[\left( {4\,;\,\,2} \right)\] | \[\left( {5\,;\,\,2} \right)\] | \[\left( {6\,;\,\,2} \right)\] |
3 | \[\left( {1\,;\,\,3} \right)\] | \[\left( {2\,;\,\,3} \right)\] | \[\left( {3\,;\,\,3} \right)\] | \[\left( {4\,;\,\,3} \right)\] | \[\left( {5\,;\,\,3} \right)\] | \[\left( {6\,;\,\,3} \right)\] |
4 | \[\left( {1\,;\,\,4} \right)\] | \[\left( {2\,;\,\,4} \right)\] | \[\left( {3\,;\,\,4} \right)\] | \[\left( {4\,;\,\,4} \right)\] | \[\left( {5;{\rm{ }}4} \right)\] | \[\left( {6\,;\,\,4} \right)\] |
5 | \[\left( {1\,;\,\,5} \right)\] | \[\left( {2\,;\,\,5} \right)\] | \[\left( {3\,;\,\,5} \right)\] | \[\left( {4\,;\,\,5} \right)\] | \[\left( {5;{\rm{ }}5} \right)\] | \[\left( {6\,;\,\,5} \right)\] |
6 | \[\left( {1\,;\,\,6} \right)\] | \[\left( {2\,;\,\,6} \right)\] | \[\left( {3\,;\,\,6} \right)\] | \[\left( {4\,;\,\,6} \right)\] | \[\left( {5;{\rm{ }}6} \right)\] | \[\left( {6\,;\,\,6} \right)\] |
Có 36 kết quả có thể xảy ra tương ứng với các ô trong bảng.
Do 2 con xúc xắc cân đối và đồng chất nên khả năng xuất hiện các mặt là như nhau. Do đó các kết quả của phép thử có cùng khả năng xảy ra.
Có 5 kết quả thuận lợi cho biến cố là \[\left( {1\,;\,\,5} \right)\,;\,\,\left( {2\,;\,\,4} \right)\,;\,\,\left( {3\,;\,\,3} \right)\,;\,\,\left( {4\,;\,\,2} \right)\,;\,\,\left( {5\,;\,\,1} \right).\]
Vậy xác suất xảy ra của biến cố là \(P = \frac{5}{{36}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.