Câu hỏi:

14/11/2024 14

Số cạnh của đa giác đều có số đường chéo bằng số cạnh là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Giả sử đa giác đều đó có \[n\] cạnh.

Từ mỗi đỉnh của hình \[n\] – giác lồi kẻ được \(n - 1\) đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \(n - 3\) đoạn thẳng là đường chéo.

Đa giác có n đỉnh nên kẻ được \(n\left( {n - 3} \right)\) đường chéo, trong đó mỗi đường chéo tính 2 lần.

Vậy số đường chéo của hình n - giác lồi là \(\frac{{n\left( {n - 3} \right)}}{2}\).

Đa giác đều có số đường chéo bằng số cạnh nên \(\frac{{n\left( {n - 3} \right)}}{2} = n\), suy ra \(n = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ).

Một lục giác đều và một ngũ giác đều chung cạnh  A D  (như hình vẽ). (ảnh 1)

Số đo góc \(BAC\) là

Xem đáp án » 14/11/2024 49

Câu 2:

Cho ngũ giác đều \[ABCDE\]. Khẳng định nào sau đây là sai?

Xem đáp án » 14/11/2024 27

Câu 3:

Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều.

Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều. Trong các hình trên, có bao nhiêu đa giác giác đều? (ảnh 1)Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều. Trong các hình trên, có bao nhiêu đa giác giác đều? (ảnh 2)

Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều. Trong các hình trên, có bao nhiêu đa giác giác đều? (ảnh 3)Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều. Trong các hình trên, có bao nhiêu đa giác giác đều? (ảnh 4)Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều. Trong các hình trên, có bao nhiêu đa giác giác đều? (ảnh 5)

Trong các hình trên, có bao nhiêu đa giác giác đều?

Xem đáp án » 14/11/2024 25

Câu 4:

Mỗi góc của bát giác đều nội tiếp đường tròn tâm \[O\] có số đo là

Xem đáp án » 14/11/2024 24

Câu 5:

Cho đa giác đều 11 cạnh có độ dài mỗi cạnh là \(5{\rm{ cm}}\). Chu vi đa giác đều này là

Xem đáp án » 14/11/2024 24

Câu 6:

Khẳng định nào sau đây là sai?

Xem đáp án » 14/11/2024 22

Câu 7:

I. Nhận biết

Cho các hình dưới đây:

Cho các hình dưới đây:Trong các hình trên, hình nào có dạng là đa giác đều? (ảnh 1)

Trong các hình trên, hình nào có dạng là đa giác đều?

Xem đáp án » 14/11/2024 21

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store