Bác Sơn muốn xây một bể chứa nước có dạng hình hộp chữ nhật không nắp có thể tích bằng
. Đáy bể có dạng hình chữ nhật với chiều rộng là
, chiều dài gấp đôi chiều rộng. Bác Sơn muốn phần diện tích cần xây (bao gồm diện tích xung quanh và diện tích đáy bể) là nhỏ nhất để tiết kiệm chi phí thì
phải bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Bác Sơn muốn xây một bể chứa nước có dạng hình hộp chữ nhật không nắp có thể tích bằng
. Đáy bể có dạng hình chữ nhật với chiều rộng là
, chiều dài gấp đôi chiều rộng. Bác Sơn muốn phần diện tích cần xây (bao gồm diện tích xung quanh và diện tích đáy bể) là nhỏ nhất để tiết kiệm chi phí thì
phải bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 9 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Chiều dài của đáy bể là ![]()
Diện tích đáy của bể là ![]()
Chiều cao của bể là:
.
Diện tích xung quanh của bể là: ![]()
Diện tích cần xây bằng tổng diện tích xung quanh và diện tích đáy của bể, và bằng:
![]()
Do
là chiều rộng của bể nên
, áp dụng bất đẳng thức Cauchy, ta có:

Suy ra ![]()
Dấu “=” xảy ra khi
hay
, tức là ![]()
Vậy muốn diện tích cần xây là tiết kiệm chi phí nhất thì ![]()
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Bán kính của đường tròn lớn là: ![]()
Bán kính của đường tròn nhỏ là: ![]()
Diện tích bề mặt trên chiếc đèn chính là diện tích hình vành khuyên được giới hạn bởi hai đường tròn có bán kính lần lượt là
và bằng:
![]()
Lời giải
Gọi \[x,y\] lần lượt là giá niêm yết của loại vé I và II (\[x,y > 0\], đơn vị: nghìn đồng).
• Tuần lễ kích cầu du lịch:
Giá loại vé I giảm 15%, tức là sẽ có giá 100% – 15% = 85% của giá niêm yết nên giá bán vé loại I lúc này là \[85\% x = 0,85x\] (nghìn đồng).
Giá loại vé II giảm 10%, tức là sẽ có giá 100% – 10% = 90% của giá niêm yết nên giá bán vé loại II lúc này là \[90\% y = 0,9y\] (nghìn đồng).
Do đó, tổng số tiền khi anh Bảo mua 3 vé loại I và 2 vé loại II là:
\[3 \cdot 0,85x + 2 \cdot 0,9y = 2,55x + 1,8y\] (nghìn đồng).
Theo bài, anh Bảo phải trả số tiền là \(24\,\,825\,\,000\) đồng (hay \(24\,\,825\) nghìn đồng) nên ta có phương trình:
\[2,55x + 1,8y = 24\,\,825\] hay \[0,85x + 0,6y = 8\,\,275\] (1)
• Tuần lễ Quốc tế Lao động:
Giá loại vé I giảm 10%, tức là sẽ có giá 100% – 10% = 90% của giá niêm yết nên giá bán vé loại I lúc này là \[90\% x = 0,9x\] (nghìn đồng).
Giá loại vé II giảm 15%, tức là sẽ có giá 100% – 15% = 85% của giá niêm yết nên giá bán vé loại II lúc này là \[85\% y = 0,85y\] (nghìn đồng).
Do đó, tổng số tiền khi anh Bình mua 3 vé loại I và 4 vé loại II là:
\[3 \cdot 0,9x + 4 \cdot 0,85y = 2,7x + 3,4y\] (nghìn đồng).
Theo bài, anh Bình phải trả số tiền là \(37\,\,790\,\,000\) đồng (hay \(37\,\,790\)nghìn đồng) nên ta có phương trình:
\[2,7x + 3,4y = 37\,\,790\] (2)
Từ (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}0,85x + 0,6y = 8\,\,275\\2,7x + 3,4y = 37\,\,790.\end{array} \right.\]
Nhân cả hai vế của phương trình (1) với 1,7 và nhân cả hai vế của phương trình (2) với 0,3, ta được hệ phương trình mới là: \[\left\{ \begin{array}{l}1,445x + 1,02y = 14\,\,067,5\\0,81x + 1,02y = 11\,\,337.\end{array} \right.\]
Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\[0,635x = 2730,5\] suy ra \[x = 4300\] (thỏa mãn).
Thay \[x = 4\,\,300\] vào phương trình (1), ta được:
\[2,55 \cdot 4\,\,300 + 1,8y = 24\,\,825\] suy ra \(1,8y = 13\,\,860\) nên \[y = 7\,\,700\] (thỏa mãn).
Ta có \[4\,\,300\] nghìn đồng tức là \[4{\rm{ 300 000}}\] đồng; \[7\,\,700\] nghìn đồng là \[7{\rm{ }}700{\rm{ 000}}\] đồng.
Vậy giá niêm yết của loại vé I là \[4{\rm{ 300 000}}\] đồng và giá niêm yết của loại vé II là \[7{\rm{ }}700{\rm{ 000}}\] đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

