Câu hỏi:

11/12/2024 2,785

Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây :

Cho hàm số bậc ba (y =( x = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây : (ảnh 1)

a) Hàm số đạt cực đại tại\(x = 2\).

b) Có 3 giá trị nguyên của \(m\)để phương trình \(f\left( x \right) = m\)có 3 nghiệm phân biệt .

c) Đường cong trên là đồ thị hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2\).

d) Gọi \(M\)\(m\)lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {2\sin x + 1} \right)\)thì \(M + m = 5\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

a) Hàm số \(f\left( x \right)\) đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 2\).

b) Phương trình \(f\left( x \right) = m\)có 3 nghiệm phân biệt \( - 2 < m < 2\), mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).

c) \(f'\left( x \right) = 3a{x^2} + 2bx + c\)

Đồ thị hàm số \(\left( C \right)\) có 2 điểm cực trị là \(\left( {0;2} \right)\)\(\left( {2; - 2} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) = - 2\\f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 2\\8a + 4b + 2c + d = - 2\\c = 0\\12a + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 3\\c = 0\\d = 2\end{array} \right.\) .

Phương trình của hàm số là \(y = f\left( x \right) = {x^3} - 3{x^2} + 2\).

d) \(y = f\left( {2\sin x + 1} \right)\) .

Đặt \(t = 2\sin x + 1 \Rightarrow y = f\left( t \right) = {t^3} - 3{t^2} + 2\).

Ta có \( - 1 \le \sin x \le 1 \Rightarrow - 1 \le 2\sin x + 1 \le 3 \Rightarrow - 1 \le t \le 3\).

Do đó \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( t \right)\)\(m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( t \right)\).

\[f'\left( t \right) = 3{t^2} - 6t\] \[ \Rightarrow f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0 \in \left( { - 1;3} \right)\\t = 2 \in \left( { - 1;3} \right)\end{array} \right.\].

\(f\left( 0 \right) = 2\); \(f\left( 2 \right) = - 2\);\(f\left( { - 1} \right) = - 2\);\(f\left( 3 \right) = 2\).

Suy ra \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( t \right) = 2\)\(m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( t \right) = - 2\) nên \(M + m = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).

\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

\(0 \le t \le 24\) nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\)\( \Rightarrow k \in \left\{ {1\,;\,2} \right\}\).

Do đó \(h'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l}t = 8\\t = 20\end{array} \right.\).

Hằng ngày mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (ảnh 1)

\( \Rightarrow h\left( t \right)\) đồng biến trên khoảng \(\left( {8\,;\,20} \right)\) hay trong khoảng từ \(8\,{\rm{h}}\) đến \(20\,{\rm{h}}\)độ sâu của mực nước trong kênh tăng dần.

Vậy \(a = 8\,;\,b = 20\)\(a + b = 28\).

Lời giải

Gọi hai kích thước của hình chữ nhật là \(x\)\(y\), với \(2x + y = 240\) \(\left( {0 < x < 120;0 < y < 240} \right)\).

Suy ra \(y = 240 - 2x\)

Diện tích của mảnh vườn hình chữ nhật là:

\(S = xy = x\left( {240 - 2x} \right) = 240x - 2{x^2},0 < x < 120\).

\(S' = 240 - 4x\); \(S' = 0 \Leftrightarrow x = 60 \in \left( {0;120} \right)\).

Bảng biến thiên

Một ông nông dân có \(240\)m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con (ảnh 1)

Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{\left( {0;120} \right)} S = 7200 \Leftrightarrow x = 60\).

Vậy ông nông dân có thể rào được cánh đồng với diện tích lớn nhất là \(7200\)2.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP