Một ông nông dân có \(240\)m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con sông. Ông không cần rào cho phía giáp bờ sông. Hỏi ông có thể rào được cánh đồng với diện tích lớn nhất là bao nhiêu m2?
Một ông nông dân có \(240\)m hàng rào và muốn rào lại cánh đồng hình chữ nhật tiếp giáp với một con sông. Ông không cần rào cho phía giáp bờ sông. Hỏi ông có thể rào được cánh đồng với diện tích lớn nhất là bao nhiêu m2?
Quảng cáo
Trả lời:
Gọi hai kích thước của hình chữ nhật là \(x\) và \(y\), với \(2x + y = 240\) \(\left( {0 < x < 120;0 < y < 240} \right)\).
Suy ra \(y = 240 - 2x\)
Diện tích của mảnh vườn hình chữ nhật là:
\(S = xy = x\left( {240 - 2x} \right) = 240x - 2{x^2},0 < x < 120\).
\(S' = 240 - 4x\); \(S' = 0 \Leftrightarrow x = 60 \in \left( {0;120} \right)\).
Bảng biến thiên

Từ bảng biến thiên ta thấy \(\mathop {\max }\limits_{\left( {0;120} \right)} S = 7200 \Leftrightarrow x = 60\).
Vậy ông nông dân có thể rào được cánh đồng với diện tích lớn nhất là \(7200\)m2.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(h\left( t \right) = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) + 5\)\( \Rightarrow h'\left( t \right) = - \frac{\pi }{6}\sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right)\).
\(h'\left( t \right) = 0 \Leftrightarrow \sin \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{3}} \right) = 0 \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{3} = k\pi \)\( \Leftrightarrow t = - 4 + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).
Mà \(0 \le t \le 24\) nên \(0 \le - 4 + 12k \le 24 \Leftrightarrow \frac{1}{3} \le k \le \frac{7}{3}\)\( \Rightarrow k \in \left\{ {1\,;\,2} \right\}\).
Do đó \(h'\left( t \right) = 0 \Rightarrow \left[ \begin{array}{l}t = 8\\t = 20\end{array} \right.\).

\( \Rightarrow h\left( t \right)\) đồng biến trên khoảng \(\left( {8\,;\,20} \right)\) hay trong khoảng từ \(8\,{\rm{h}}\) đến \(20\,{\rm{h}}\)độ sâu của mực nước trong kênh tăng dần.
Vậy \(a = 8\,;\,b = 20\) và \(a + b = 28\).
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Hàm số \(f\left( x \right)\) đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 2\).
b) Phương trình \(f\left( x \right) = m\)có 3 nghiệm phân biệt \( - 2 < m < 2\), mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 1;0;1} \right\}\).
c) \(f'\left( x \right) = 3a{x^2} + 2bx + c\)
Đồ thị hàm số \(\left( C \right)\) có 2 điểm cực trị là \(\left( {0;2} \right)\) và \(\left( {2; - 2} \right)\) nên ta có hệ phương trình
\(\left\{ \begin{array}{l}f\left( 0 \right) = 2\\f\left( 2 \right) = - 2\\f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 2\\8a + 4b + 2c + d = - 2\\c = 0\\12a + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 3\\c = 0\\d = 2\end{array} \right.\) .
Phương trình của hàm số là \(y = f\left( x \right) = {x^3} - 3{x^2} + 2\).
d) \(y = f\left( {2\sin x + 1} \right)\) .
Đặt \(t = 2\sin x + 1 \Rightarrow y = f\left( t \right) = {t^3} - 3{t^2} + 2\).
Ta có \( - 1 \le \sin x \le 1 \Rightarrow - 1 \le 2\sin x + 1 \le 3 \Rightarrow - 1 \le t \le 3\).
Do đó \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( t \right)\) và \(m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( t \right)\).
\[f'\left( t \right) = 3{t^2} - 6t\] \[ \Rightarrow f'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0 \in \left( { - 1;3} \right)\\t = 2 \in \left( { - 1;3} \right)\end{array} \right.\].
\(f\left( 0 \right) = 2\); \(f\left( 2 \right) = - 2\);\(f\left( { - 1} \right) = - 2\);\(f\left( 3 \right) = 2\).
Suy ra \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( t \right) = 2\) và \(m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} f\left( t \right) = - 2\) nên \(M + m = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
