Câu hỏi:

14/12/2024 1,485

Gọi \(\left( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \(\left( H \right)\)\({S_1}\) và diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,y = \sqrt x \) và trục \(Oy\)\({S_2}\).

Gọi ( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \ (ảnh 1)

a) Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,x = 0,x = 1\) và trục \(Ox\) xung quanh trục \(Ox\) bằng \(\frac{{7\pi }}{3}\).

b) Giá trị \({S_1} = \frac{7}{6}\).

c) \({S_1} = {S_2}\).

d) Thể tích khối tròn xoay được tạo bởi khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng \(\pi \).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) Đ, c) S, d) S

a) \(V = \pi \int\limits_0^1 {{{\left( {2 - x} \right)}^2}dx} = \frac{{7\pi }}{3}\).

b) Ta có \({S_1} = \int\limits_0^1 {\sqrt x dx} + \int\limits_1^2 {\left| {2 - x} \right|dx} \)\( = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^1 + \left. {\left( {2x - \frac{{{x^2}}}{2}} \right)} \right|_1^2\)\( = \frac{2}{3} + 4 - 2 - \left( {2 - \frac{1}{2}} \right) = \frac{7}{6}\).

c) Ta có \({S_2} = {S_{\Delta OAB}} - {S_1} = \frac{1}{2}.2.2 - \frac{7}{6} = \frac{5}{6}\). (với \(A\left( {0;2} \right),B\left( {2;0} \right)\))

d) \(V = \pi \int\limits_0^1 {{{\left( {\sqrt x } \right)}^2}dx} + \pi \int\limits_1^2 {{{\left( {2 - x} \right)}^2}dx} \)\( = \left. {\pi \frac{{{x^2}}}{2}} \right|_0^1 - \left. {\pi \frac{{{{\left( {2 - x} \right)}^3}}}{3}} \right|_1^2\)\[ = \frac{\pi }{2} + \frac{\pi }{3} = \frac{{5\pi }}{6}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 2 = 0\). Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) và cách \(A\) một khoảng bằng 1 có dạng \(\left( \alpha \right):x - by + cz + d = 0\). Khi đó \(S = 3b - c + d\)?

Xem đáp án » 14/12/2024 4,378

Câu 2:

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn \({x^2} + {y^2} = 16\), cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) ta được thiết diện là tam giác đều. Khi đó thể tích của vật thể có dạng \(\frac{{a\sqrt 3 }}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính \(S = a + b\).

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn (ảnh 1)

Xem đáp án » 14/12/2024 2,939

Câu 3:

Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = {x^2},y = x\) và các đường thẳng \(x = 0;x = 1\) được tính bởi công thức

Xem đáp án » 14/12/2024 1,209

Câu 4:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\]

Xem đáp án » 14/12/2024 916

Câu 5:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Xem đáp án » 14/12/2024 912

Câu 6:

Cho hàm số \(f\left( x \right) = 3 + \frac{1}{x}\). Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của \(f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)?

Xem đáp án » 14/12/2024 797

Bình luận


Bình luận