Câu hỏi:

14/12/2024 23,661

Cho điểm \(A\left( {1;2; - 1} \right)\) và mặt phẳng \(\left( \alpha \right):x - 2y + 2z + 2 = 0\). Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) và cách \(A\) một khoảng bằng 1 có dạng \(\left( \alpha \right):x - by + cz + d = 0\). Khi đó \(S = 3b - c + d\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt phẳng \(\left( \beta \right)\) song song với mặt phẳng \(\left( \alpha \right)\) nên mặt phẳng \(\left( \beta \right)\) có dạng:\(x - 2y + 2z + d = 0\left( {d \ne 2} \right)\).

\(d\left( {M,\left( \beta \right)} \right) = 1 \Leftrightarrow \frac{{\left| {1 - 2.2 + 2.\left( { - 1} \right) + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 1 \Leftrightarrow \left| {d - 5} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}d = 8\left( {TM} \right)\\d = 2\left( {KTM} \right)\end{array} \right.\).

Do đó \(\left( \beta \right):x - 2y + 2z + 8 = 0\). Suy ra \(b = 2;c = 2;d = 8\).

Vậy \(S = 3.2 - 2 + 8 = 12\).

Bình luận


Bình luận

Quang Tèo
21:57 - 13/03/2025

vãi l lấy số 5 đâu ra v

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn \({x^2} + {y^2} = 16\), cắt vật bởi các mặt phẳng vuông góc với trục \(Ox\) ta được thiết diện là tam giác đều. Khi đó thể tích của vật thể có dạng \(\frac{{a\sqrt 3 }}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Tính \(S = a + b\).

Một vật có kích thước và hình dáng như hình vẽ dưới đây. Đáy là hình tròn giới hạn bởi đường tròn (ảnh 1)

Xem đáp án » 14/12/2024 8,809

Câu 2:

Gọi \(\left( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \(\left( H \right)\)\({S_1}\) và diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,y = \sqrt x \) và trục \(Oy\)\({S_2}\).

Gọi ( H \right)\) là hình giới hạn bởi đồ thị các hàm số \(y = \sqrt x ,y = 2 - x\) và trục hoành. Kí hiệu diện tích hình \ (ảnh 1)

a) Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = 2 - x,x = 0,x = 1\) và trục \(Ox\) xung quanh trục \(Ox\) bằng \(\frac{{7\pi }}{3}\).

b) Giá trị \({S_1} = \frac{7}{6}\).

c) \({S_1} = {S_2}\).

d) Thể tích khối tròn xoay được tạo bởi khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng \(\pi \).

Xem đáp án » 14/12/2024 5,024

Câu 3:

Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = {x^2},y = x\) và các đường thẳng \(x = 0;x = 1\) được tính bởi công thức

Xem đáp án » 14/12/2024 3,544

Câu 4:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {2;0;0} \right)\], \[B\left( {0;3;0} \right)\], \[C\left( {0;0; - 1} \right)\]. Phương trình của mặt phẳng \[\left( P \right)\] qua \[D\left( {1;1;1} \right)\]và song song với mặt phẳng \[\left( {ABC} \right)\]

Xem đáp án » 14/12/2024 3,337

Câu 5:

Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 2z - 8 = 0\] \[\left( Q \right):x + 2y + 2z - 4 = 0\] bằng

Xem đáp án » 14/12/2024 2,412

Câu 6:

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;0;0} \right),B\left( {0;1;0} \right),C\left( {0;0; - 2} \right)\). Mặt phẳng \(\left( {ABC} \right)\) có phương trình là:

Xem đáp án » 14/12/2024 1,661
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay