Câu hỏi:
12/01/2025 14Cho các đồ thị hàm số \(y = {\log _a}x;y = {\log _b}x;y = {\log _c}x\) như hình vẽ.
a) \(a > 1\).
b) \(0 < c < 1 < a < b\).
c) \({\left( {{a^3}.\sqrt a } \right)^{{{\log }_a}b}} = \sqrt[3]{{{b^2}}}\).
d) \(P = \log \frac{a}{b} + \log \frac{b}{c} + \log \frac{c}{d} - \log \frac{a}{d} > 0\) với \(d > 0\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Đ, b) Đ, c) S, d) S
a) Hàm số \(y = {\log _a}x\) đồng biến nên \(a > 1\).
b) Hàm số \(y = {\log _c}x\) nghịch biến nên \(0 < c < 1;\)Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) nên \(a > 1,b > 1.\)</>
Xét \(x > 1\)thì \({\log _a}x > {\log _b}x\)\( \Leftrightarrow {\log _a}x > \frac{1}{{{{\log }_x}b}}\)\( \Leftrightarrow {\log _a}x{\log _x}b > 1\)\( \Leftrightarrow {\log _a}b > 1\)\( \Leftrightarrow a < b\).
c) \({\left( {{a^3}.\sqrt a } \right)^{{{\log }_a}b}}\)\( = {a^{\frac{7}{2}{{\log }_a}b}} = {b^{\frac{7}{2}}} = \sqrt {{b^7}} \).
d) \(P = \log \frac{a}{b} + \log \frac{b}{c} + \log \frac{c}{d} - \log \frac{a}{d}\)\( = \log \left[ {\left( {\frac{a}{b}.\frac{b}{c}.\frac{c}{d}} \right):\frac{a}{d}} \right] = \log 1 = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cường độ một trận động đất M (richter) được cho bởi công thức \(M = \log A - \log {A_0}\), với \(A\) là biên độ rung chấn tối đa và \({A_0}\) là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ gần với số nào sau đây nhất là
Câu 2:
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho a là một số thực dương, biểu thức \({a^{\frac{2}{3}}}\sqrt a \)viết dưới dạng lũy thừa với số mũ hữu tỉ là
Câu 3:
Trong một phòng thí nghiệm, người ta nuôi một loại vi khuẩn. Lúc đầu có 300 vi khuẩn. Sau một giờ, số vi khuẩn là 705 con. Giả sử số vi khuẩn tăng lên theo công thức tăng trưởng mũ, số vi khuẩn sau \(x\) giờ là \(f\left( x \right) = C.{e^{kx}}\). Tính số lượng vi khuẩn có được sau 5 giờ. (kết quả làm tròn đến hàng phần mười).
Câu 4:
Với \(a\) là số thực dương tùy ý, biểu thức \({a^{\frac{5}{3}}}.{a^{\frac{1}{3}}}\) được viết dưới dạng \({a^m}\). Tính \(m\).
Câu 5:
Cho \(a > 0,\,a \ne 1\), biểu thức \(D = {\log _{{a^3}}}a\) có giá trị bằng bao nhiêu?
Câu 6:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = 1,AD = 2\sqrt 3 \). Cạnh bên \(SA\) vuông góc với đáy, biết tam giác \(SAD\) có diện tích \(S = 3\). Tính khoảng cách từ \(C\) đến \(\left( {SBD} \right)\). (kết quả làm tròn đến hàng phần trăm).
Câu 7:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(2a\). Tam giác \(SAB\) là tam giác vuông cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Tính góc giữa đường thẳng \(SC\) và mặt phẳng \(ABC\)?
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
về câu hỏi!