Câu hỏi:

12/01/2025 1,069

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(H,K\) theo thứ tự là hình chiếu của \(A\) trên các cạnh \(SB,SD\).

a) \(BC \bot SA\).

b) Tam giác \(SCD\) vuông.

c) \(SC \bot \left( {AHK} \right)\).

d) \(HK \bot SC\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) Đ, c) Đ, d) Đ

Cho hình chóp  S . A B C D  có đáy là hình chữ nhật và  S A  vuông góc với mặt phẳng đáy. Gọi  H , K  theo thứ tự là hình chiếu của  A  trên các cạnh  S B , S D .  a)  B C ⊥ S A .  b) Tam giác  S C D  vuông.  c)  S C ⊥ ( A H K ) .  d)  H K ⊥ S C . (ảnh 1)

a)

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).

b) Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\left( {{\rm{do}}\;SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

Vì \(\left\{ \begin{array}{l}CD \bot \left( {SAD} \right)\\SD \subset \left( {SAD} \right)\end{array} \right. \Rightarrow CD \bot SD\) hay tam giác \(SCD\) vuông tại \(D\).

c) Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA(\;{\rm{do}}\;SA \bot \left( {ABCD} \right))\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

Ta có \(\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\left( {{\rm{do}}\;BC \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)(1).

Tương tự \(\left\{ \begin{array}{l}AK \bot SD\\AK \bot CD\left( {{\rm{do}}\;CD \bot \left( {SAD} \right)} \right)\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right) \Rightarrow AK \bot SC\) (2).

Từ (1) và (2) suy ra \(SC \bot \left( {AHK} \right)\).

d) Vì \(SC \bot \left( {AHK} \right)\) mà \(HK \subset \left( {AHK} \right)\) nên \(HK \bot SC\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có \({\log _{{a^2}}}\left( {a{b^2}} \right) = \frac{{{{\log }_a}\left( {a{b^2}} \right)}}{{{{\log }_a}{a^2}}}\)\( = \frac{{{{\log }_a}a + {{\log }_a}{b^2}}}{2}\)\( = \frac{{1 + 2{{\log }_a}b}}{2}\)\( = \frac{{1 + 4}}{2} = \frac{5}{2}\).

Lời giải

Đáp án đúng là: B

Cho hình chóp  S . A B C , có đáy  A B C  là tam giác đều cạnh  a . Biết cạnh bên  S A  vuông góc với đáy và  S A = a √ 3 2  (tham khảo hình vẽ).    Số đo của góc phẳng nhị diện  [ S , B C , A ]  bằng (ảnh 2)

Gọi \(M\) là trung điểm của \(BC\).

Vì tam giác \(ABC\) là tam giác đều nên \(AM \bot BC\) mà \(SA \bot BC\) (do \(SA \bot \left( {ABC} \right)\)) nên \(BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).

Do đó \(\left[ {S,BC,A} \right] = \widehat {SMA}\).

Vì tam giác \(ABC\) đều nên \(AM = \frac{{a\sqrt 3 }}{2}\) mà \(SA = \frac{{a\sqrt 3 }}{2}\) nên tam giác \(SAM\)vuông cân tại \(A\).

Suy ra \(\widehat {SMA} = 45^\circ \).

Câu 3

Cho hình chóp \(S.ABCD\) có \(SA\, \bot \,\left( {ABCD} \right)\). Khẳng định nào sau đây sai.

Cho hình chóp  S . A B C D  có  S A ⊥ ( A B C D ) . Khẳng định nào sau đây sai. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chóp \(S.ABC\) có \(SA\, \bot \,\left( {ABC} \right)\), góc giữa \(SB\) và mặt phẳng \(\left( {ABC} \right)\) là.

Cho hình chóp  S . A B C  có  S A ⊥ ( A B C ) , góc giữa  S B  và mặt phẳng  ( A B C )  là. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay