Câu hỏi:

12/01/2025 67

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a,BC = 2a\) và \(SA \bot \left( {ABCD} \right)\), cạnh \(SA = a\sqrt {15} \).

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình chữ nhật có  A B = a , B C = 2 a  và  S A ⊥ ( A B C D ) , cạnh  S A = a √ 15 .    a)  A C ⊥ S A .  b)  B D ⊥ ( S A C ) .  c)  B C ⊥ S B .  d) Góc tạo bởi đường thẳng  S C  và mặt phẳng  ( A B C D )  bằng  30 ∘ . (ảnh 1)

a) \(AC \bot SA\).

b) \(BD \bot \left( {SAC} \right)\).

c) \(BC \bot SB\).

d) Góc tạo bởi đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(30^\circ \).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) S

a) Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AC\).

b) \(BD\) không vuông góc với \(\left( {SAC} \right)\).

c) Vì \(BC \bot AB\) và \(SA \bot BC\) nên \(BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot SB\).

d) Có \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\).

Xét \(\Delta SAC\) có \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt {15} }}{{\sqrt {{a^2} + 4{a^2}} }} = \sqrt 3 \Rightarrow \widehat {SCA} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

PHẦN II. TỰ LUẬN

Cho các hàm số \(y = {\log _2}x;y = {\log _{\frac{1}{2}}}x;y = {\left( {\frac{1}{2}} \right)^x}\) và \(y = {2^x}\). Đồ thị hàm số dưới đây là của hàm số nào đã cho?

Cho các hàm số  y = log 2 x ; y = log 1 2 x ; y = ( 1 2 ) x  và  y = 2 x . Đồ thị hàm số dưới đây là của hàm số nào đã cho? (ảnh 1)

Xem đáp án » 12/01/2025 180

Câu 2:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = 1,AD = 2\sqrt 3 \). Cạnh bên \(SA\) vuông góc với đáy, biết tam giác \(SAD\) có diện tích \(S = 3\). Tính khoảng cách từ \(C\) đến \(\left( {SBD} \right)\) (kết quả làm tròn đến hàng phần trăm).

Xem đáp án » 12/01/2025 115

Câu 3:

Một ngân hàng \(X\), quy định về số tiền nhận được của khách hàng sau \(n\) năm gửi tiền vào ngân hàng tuân theo công thức \(P\left( n \right) = A{\left( {1 + 8\% } \right)^n}\), trong đó \(A\) là số tiền gửi ban đầu của khách hàng. Hỏi số tiền ít nhất mà khách hàng phải gửi là bao nhiêu để sau 3 năm khách hàng đó nhận được lớn hơn 850 triệu đồng (kết quả làm tròn đến hàng triệu).

Xem đáp án » 12/01/2025 75

Câu 4:

Cho các đường thẳng \(a,b\) và các mặt phẳng \(\left( \alpha \right),\left( \beta \right)\). Chọn mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 12/01/2025 70

Câu 5:

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN

A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Với \(a\) là số thực dương tùy ý, tích \({a^2}.{a^{\frac{1}{2}}}\) bằng

Xem đáp án » 12/01/2025 64

Câu 6:

Đặt \(a = {\log _2}5\). Khi đó \({\log _{25}}32\) bằng

Xem đáp án » 12/01/2025 63

Bình luận


Bình luận
Vietjack official store