Câu hỏi:

12/01/2025 941

Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\), chiều cao bằng \(\frac{a}{2}\). Gọi \(M\) là trung điểm \(CD\) như hình vẽ. Tính số đo góc phẳng nhị diện \(\left[ {S,CD,O} \right]\).

Cho hình chóp tứ giác đều có cạnh đáy bằng  a , chiều cao bằng  a 2 . Gọi  M  là trung điểm  C D  như hình vẽ. Tính số đo góc phẳng nhị diện  [ S , C D , O ] . (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Vì \(SO \bot \left( {ABCD} \right)\)\( \Rightarrow SO \bot CD\) mà \(OM \bot CD\) suy ra \(CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

Do đó \(\left[ {S,CD,O} \right] = \widehat {SMO}\).

Vì \(OM = \frac{{AD}}{2} = \frac{a}{2}\) mà \(SO = \frac{a}{2}\) nên \(\Delta SOM\) vuông cân tại \(O\). Suy ra \(\widehat {SMO} = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 18,2

Diện tích đáy lớn là \[{S_1} = \frac{{{{6.2}^2}.\sqrt 3 }}{4} = 6\sqrt 3 \].

Diện tích đáy nhỏ là \[{S_2} = \frac{{{{6.1}^2}.\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\].

Thể tích của chậu nước là \(V = \frac{1}{3}\left( {{S_1} + {S_2} + \sqrt {{S_1}.{S_2}} } \right).h = \frac{1}{3}\left( {6\sqrt 3 + \frac{{3\sqrt 3 }}{2} + \sqrt {6\sqrt 3 .\frac{{3\sqrt 3 }}{2}} } \right).3 \approx 18,2\).

Lời giải

Hướng dẫn giải

Đây là dạng đồ thị của hàm số \(y = {\log _a}x\).

Hàm số trên đồng biến nên \(a > 1\).

Mà đồ thị hàm số đi qua điểm \(\left( {2;1} \right)\) nên đồ thị đã cho là đồ thị của hàm số \(y = {\log _2}x\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP