Câu hỏi:

12/01/2025 613

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = 1,AD = 2\sqrt 3 \). Cạnh bên \(SA\) vuông góc với đáy, biết tam giác \(SAD\) có diện tích \(S = 3\). Tính khoảng cách từ \(C\) đến \(\left( {SBD} \right)\) (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trả lời: 0,84

Cho hình chóp  S . A B C D  có đáy  A B C D  là hình chữ nhật,  A B = 1 , A D = 2 √ 3 . Cạnh bên  S A  vuông góc với đáy, biết tam giác  S A D  có diện tích  S = 3 . Tính khoảng cách từ  C  đến  ( S B D )  (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Ta có \(AC \cap BD = \left\{ O \right\}\), \(O\) là trung điểm của \(AC\). Suy ra \(d\left( {C,\left( {SBD} \right)} \right) = d\left( {A,\left( {SBD} \right)} \right)\).

Hạ \(AH \bot BD,AK \bot SH\).

Vì \(AH \bot BD\) và \(SA \bot BD\) nên \(BD \bot \left( {SAH} \right) \Rightarrow BD \bot AK\) mà \(AK \bot SH\) nên \(AK \bot \left( {SBD} \right)\).

Do đó \(d\left( {A,\left( {SBD} \right)} \right) = AK\).

Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{{1^2}}} + \frac{1}{{12}} = \frac{{13}}{{12}}\).

Vì \(\Delta SAD\) có diện tích \(S = 3\)\( \Rightarrow SA = \frac{{2S}}{{AD}} = \frac{{2.3}}{{2\sqrt 3 }} = \sqrt 3 \).

Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}} = \frac{1}{3} + \frac{{13}}{{12}} = \frac{{17}}{{12}} \Rightarrow AK \approx 0,84\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 18,2

Diện tích đáy lớn là \[{S_1} = \frac{{{{6.2}^2}.\sqrt 3 }}{4} = 6\sqrt 3 \].

Diện tích đáy nhỏ là \[{S_2} = \frac{{{{6.1}^2}.\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\].

Thể tích của chậu nước là \(V = \frac{1}{3}\left( {{S_1} + {S_2} + \sqrt {{S_1}.{S_2}} } \right).h = \frac{1}{3}\left( {6\sqrt 3 + \frac{{3\sqrt 3 }}{2} + \sqrt {6\sqrt 3 .\frac{{3\sqrt 3 }}{2}} } \right).3 \approx 18,2\).

Lời giải

Hướng dẫn giải

Đây là dạng đồ thị của hàm số \(y = {\log _a}x\).

Hàm số trên đồng biến nên \(a > 1\).

Mà đồ thị hàm số đi qua điểm \(\left( {2;1} \right)\) nên đồ thị đã cho là đồ thị của hàm số \(y = {\log _2}x\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP