Câu hỏi:

25/01/2025 327 Lưu

Rút gọn \[{\rm{S}} = 1 + {\cos ^2}{\rm{x}} + {\cos ^4}{\rm{x}} + {\cos ^6}{\rm{x}} + .... + {\cos ^{2{\rm{n}}}}{\rm{x}} + ...\]với\[\cos {\rm{x}} \ne \pm 1\]

A. \[{\rm{S}} = {\sin ^2}{\rm{x}}\]

B. \[{\rm{S}} = {\cos ^2}{\rm{x}}\]

C. \[{\rm{S}} = \frac{1}{{\sin {\rm{x}}}}\]

D. \[{\rm{S}} = \frac{1}{{{{\cos }^2}{\rm{x}}}}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \[ - 1 \le \cos {\rm{x}} \le 1,\,\cos {\rm{x}} \ne \pm 1 \Rightarrow - 1 < \cos {\rm{x}} < 1\]

Do đó \[1,\,{\cos ^2}{\rm{x}},{\cos ^4}{\rm{x}},{\cos ^6}{\rm{x}},....,{\cos ^{2{\rm{n}}}}{\rm{x}},...\]là cấp số nhân lùi vô hạn với công bội \[{\cos ^2}{\rm{x}}.\].

Do đó:

\[{\rm{S}} = 1 + {\cos ^2}{\rm{x}} + {\cos ^4}{\rm{x}} + {\cos ^6}{\rm{x}} + .... + {\cos ^{2{\rm{n}}}}{\rm{x}} + ... = \frac{1}{{1 - {{\cos }^2}{\rm{x}}}} = \frac{1}{{{{\sin }^2}{\rm{x}}}}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[{{\rm{1}}^{\rm{2}}}{\rm{ + }}{{\rm{2}}^{\rm{2}}}{\rm{ + }}...{\rm{ + }}{{\rm{n}}^{\rm{2}}}{\rm{ = }}\frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right)\left( {{\rm{2n + 1}}} \right)}}{{\rm{6}}}\]

Do đó \[{\rm{lim}}\frac{{{{\rm{1}}^{\rm{2}}}{\rm{ + }}{{\rm{2}}^{\rm{2}}}{\rm{ + }}...{\rm{ + }}{{\rm{n}}^{\rm{2}}}}}{{{\rm{n}}\left( {{{\rm{n}}^{\rm{2}}}{\rm{ + 1}}} \right)}}{\rm{ = lim}}\frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right)\left( {{\rm{2n + 1}}} \right)}}{{{\rm{6n}}\left( {{{\rm{n}}^{\rm{2}}}{\rm{ + 1}}} \right)}}{\rm{ = }}\frac{{\rm{2}}}{{\rm{6}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\]

Đáp án cần chọn là: D

Lời giải

Ta có \[{\rm{C}}_{\rm{n}}^{\rm{2}}{\rm{ < }}{{\rm{2}}^{\rm{n}}}\]

Khi \[{\rm{n}} \to \infty \Rightarrow {2^{\rm{n}}} < {3^{\rm{n}}}\] do đó \[{\rm{C}}_{\rm{n}}^{\rm{2}}{\rm{ < }}{{\rm{3}}^{\rm{n}}} \Rightarrow \frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right)}}{{\rm{2}}}{\rm{ < }}{{\rm{3}}^{\rm{n}}}\]

Ta có \[{\rm{lim}}\sqrt {{\rm{2}}{\rm{.}}{{\rm{3}}^{\rm{n}}} - {\rm{n + 2}}} {\rm{ = lim}}\sqrt {{{\rm{3}}^{\rm{n}}}} \sqrt {{\rm{2}} - \frac{{\rm{n}}}{{{{\rm{3}}^{\rm{n}}}}}{\rm{ + 2}}{\rm{.}}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{n}}}}}} \]

\(\left\{ {\begin{array}{*{20}{c}}{{\rm{lim}}\sqrt {{{\rm{3}}^{\rm{n}}}} {\rm{ = + }}\infty }\\{{\rm{0}} \le \frac{{\rm{n}}}{{{{\rm{3}}^{\rm{n}}}}} \le \frac{{\rm{n}}}{{{\rm{C}}_{\rm{n}}^{\rm{2}}}} = \frac{{\rm{n}}}{{\frac{{{\rm{n}}\left( {{\rm{n}} - 1} \right)}}{2}}}}\\{{\rm{lim}}\frac{{\rm{1}}}{{{{\rm{3}}^{\rm{n}}}}}{\rm{ = 0}}}\end{array}} \right. = \frac{2}{{{\rm{n}} - 1}} \to 0 \Rightarrow {\rm{lim}}\frac{{\rm{n}}}{{{{\rm{3}}^{\rm{n}}}}}{\rm{ = 0}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{\rm{lim}}\sqrt {{{\rm{3}}^{\rm{n}}}} {\rm{ = + }}\infty }\\{{\rm{lim}}\sqrt {{\rm{2}} - \frac{{\rm{n}}}{{{{\rm{3}}^{\rm{n}}}}} + 2 + \frac{{\rm{1}}}{{{{\rm{3}}^{\rm{n}}}}}} {\rm{ = }}\sqrt 2 > 0}\end{array}} \right.\)

\[ \Rightarrow \lim \sqrt {{{2.3}^{\rm{n}}} - {\rm{n}} + 2} = + \infty \]

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP