20 câu trắc nghiệm Toán 11 Kết nối tri thức Giới hạn của dãy số có đáp án
67 người thi tuần này 4.6 477 lượt thi 20 câu hỏi 45 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi giữa học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Bài tập Giới hạn cơ bản, nâng cao có lời giải (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có \[{\rm{0}} \le \left| {\frac{{{\rm{sin5n}}}}{{{\rm{3n}}}}} \right| \le \frac{{\rm{1}}}{{\rm{n}}}\] mà \[\lim \frac{1}{{\rm{n}}} = 0\]
Nên theo nguyên lý kẹp có: \[{\mathop{\rm li}\nolimits} {\rm{m}}\,\frac{{{\rm{sin5n}}}}{{{\rm{3n}}}}{\rm{ = 0}}\] do đó \[\mathop {\lim }\limits_{} \left( {\frac{{{\rm{sin5n}}}}{{{\rm{3n}}}} - 2} \right) = - 2\]
Đáp án cần chọn là: A
Lời giải
Ta có
Đáp án cần chọn là: D
Lời giải
Đáp án cần chọn là: B
Lời giải
Ta có Đáp án cần chọn là: B
Lời giải
Ta có \[{\rm{C}}_{\rm{n}}^{\rm{2}}{\rm{ < }}{{\rm{2}}^{\rm{n}}}\]
Khi \[{\rm{n}} \to \infty \Rightarrow {2^{\rm{n}}} < {3^{\rm{n}}}\] do đó \[{\rm{C}}_{\rm{n}}^{\rm{2}}{\rm{ < }}{{\rm{3}}^{\rm{n}}} \Rightarrow \frac{{{\rm{n}}\left( {{\rm{n}} - {\rm{1}}} \right)}}{{\rm{2}}}{\rm{ < }}{{\rm{3}}^{\rm{n}}}\]
Ta có
\[ \Rightarrow \lim \sqrt {{{2.3}^{\rm{n}}} - {\rm{n}} + 2} = + \infty \]
Đáp án cần chọn là: D
Câu 6
A. 1
B. 0
C. 2
D. 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\lim {{\rm{u}}_{\rm{n}}}{\rm{ = 0}}\] nếu \[\left| {{{\rm{u}}_{\rm{n}}}} \right|\]có thể nhỏ hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi
B. \[\lim {{\rm{u}}_{\rm{n}}}{\rm{ = 0}}\]nếu \[\left| {{{\rm{u}}_{\rm{n}}}} \right|\]có thể lớn hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi
C. \[\lim {{\rm{u}}_{\rm{n}}}{\rm{ = 0}}\]nếu un có thể nhỏ hơn môt số dương bé tùy ý, kể từ một số hạng nào đó trở đi
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. 10
B. 8
C. 6
D. 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. 1
B. 4
C. 3
D. 2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
A. \[{\rm{S}} = {\sin ^2}{\rm{x}}\]
B. \[{\rm{S}} = {\cos ^2}{\rm{x}}\]
C. \[{\rm{S}} = \frac{1}{{\sin {\rm{x}}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
A. 17
B. 68
C. 133
D. 137
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.