Đề kiểm tra Hai mặt phẳng song song (có lời giải) - Đề 1
4.6 0 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi giữa học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Bài tập Giới hạn cơ bản, nâng cao có lời giải (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn D
Ta có
\(\left\{ \begin{array}{l}BA'//CD'\\A'C'//AC\end{array} \right.\)\( \Rightarrow \left( {BA'C'} \right)//\left( {ACD'} \right)\)
\(\left\{ \begin{array}{l}AD//BC\\AA'//BB'\end{array} \right.\)\( \Rightarrow \left( {ADD'A'} \right)//\left( {BCC'B'} \right)\)
\(\left\{ \begin{array}{l}BD//B'D'\\A'D//B'C\end{array} \right.\)\( \Rightarrow \left( {BA'D} \right)//\left( {CB'D'} \right)\)
Mặt khác \(B' \in \left( {ABA'} \right) \cap \left( {CB'D'} \right) \Rightarrow \)D sai.
Câu 2
Lời giải
Chọn B
Ta có \(B'D'{\rm{//}}BD\); \(AD'{\rm{//}}C'B\) \( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {C'BD} \right)\).
Câu 3
Lời giải
Chọn C
Xét hai mặt phẳng \(\left( {ADF} \right)\) và \(\left( {BCE} \right)\) có : \(\left\{ \begin{array}{l}AD{\rm{//}}BC\\AF{\rm{//}}BE\end{array} \right.\) nên \(\left( I \right):\,\left( {ADF} \right){\rm{//}}\left( {BCE} \right)\) là đúng.
Xét hai mặt phẳng \(\left( {ADF} \right)\) và \(\left( {MOO'} \right)\) có : \(\left\{ \begin{array}{l}AD{\rm{//}}MO\\AF{\rm{//}}MO'\end{array} \right.\) nên \(\left( {II} \right):\,\left( {MOO'} \right){\rm{//}}\left( {ADF} \right)\)là đúng.
Vì \(\left( I \right):\,\left( {ADF} \right){\rm{//}}\left( {BCE} \right)\) đúng và \(\left( {II} \right):\,\left( {MOO'} \right){\rm{//}}\left( {ADF} \right)\) đúng nên theo tính chất bắc cầu ta có \(\left( {III} \right):\,\left( {MOO'} \right){\rm{//}}\left( {BCE} \right)\)đúng.
Xét mặt phẳng \(\left( {ABCD} \right)\) có \(AC \cap BD = O\) nên hai mặt phẳng \(\left( {ACE} \right)\) và \(\left( {BDF} \right)\) có điểm \(O\) chung vì vậy không song song nên \(\left( {IV} \right):\,\left( {ACE} \right){\rm{//}}\left( {BDF} \right)\) sai.
Câu 4
Lời giải
Chọn C
A đúng vì hai mặt phẳng \(\left( {ABCD} \right)\)và \(\left( {A'B'C'D'} \right)\)là hai mặt đáy của hình hộp nên song song.
B đúng vì hai mặt phẳng \(\left( {AA'D'} \right)\)và \(\left( {BCC'} \right)\)là hai mặt đối của hình hộp nên song song.
D đúng vì hai mặt phẳng \(\left( {ABB'} \right)\)và \(\left( {CDC'} \right)\)là hai mặt đối của hình hộp nên song song.
C sai vì hai mặt phẳng này có điểm chung là \[O\]với \(O = AC \cap BD\).
Câu 5
Lời giải
Chọn C
Gọi \(M\), \(N\), \(P\) lần lượt là trung điểm \(BC\),\(B'C'\)và \(CC'\).
Ta có \[\left\{ \begin{array}{l}IJ//MN\\IJ \not\subset \left( {BB'C} \right)\\MN \subset \left( {BB'C} \right)\end{array} \right.\] nên \(IJ//\left( {BB'C'} \right)\).
Ta có \[\left\{ \begin{array}{l}JK//NP\\JK \not\subset \left( {BB'C} \right)\\NP \subset \left( {BB'C} \right)\end{array} \right.\] nên \(JK//\left( {BB'C'} \right)\).
Từ đó suy ra \(\left( {IJK} \right)//\left( {BB'C'} \right)\).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Các mệnh đề sau đúng/sai.
a) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một đường thẳng \(a\) chứa \(M\) và song song với \(\left( \alpha \right).\)
b) Cho hai đường thẳng \(a\) và \(b\) chéo nhau. Khi đó tồn tại duy nhất mặt phẳng \(\left( \alpha \right)\) chứa \(a\) và song song với \(b.\)
c) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa điểm \(M\) và song song với \(\left( \alpha \right).\)
d) Cho đường thẳng \(a\) và mặt phẳng \(\left( \alpha \right)\) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa \(a\) và song song với \(\left( \alpha \right).\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Các mệnh đề sau đúng/sai.
a) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một đường thẳng \(a\) chứa \(M\) và song song với \(\left( \alpha \right).\)
b) Cho hai đường thẳng \(a\) và \(b\) chéo nhau. Khi đó tồn tại duy nhất mặt phẳng \(\left( \alpha \right)\) chứa \(a\) và song song với \(b.\)
c) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa điểm \(M\) và song song với \(\left( \alpha \right).\)
d) Cho đường thẳng \(a\) và mặt phẳng \(\left( \alpha \right)\) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa \(a\) và song song với \(\left( \alpha \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.