Câu hỏi:

06/10/2025 8 Lưu

Cho hai hình bình hành \(ABCD\)\(ABEF\) có tâm lần lượt là \(O\)\(O'\), không cùng nằm trong một mặt phẳng. Gọi \(M\) là trung điểm \(AB\), xét các khẳng định             \(\left( I \right):\,\left( {ADF} \right){\rm{//}}\left( {BCE} \right)\);\(\left( {II} \right):\,\left( {MOO'} \right){\rm{//}}\left( {ADF} \right)\);\(\left( {III} \right):\,\left( {MOO'} \right){\rm{//}}\left( {BCE} \right)\); \(\left( {IV} \right):\,\left( {ACE} \right){\rm{//}}\left( {BDF} \right)\)Những khẳng định nào đúng?              

A. \(\left( I \right)\).   
B. \(\left( I \right),\left( {II} \right)\).              
C. \(\left( I \right),\,\left( {II} \right),\,\left( {III} \right)\).                     
D. \(\left( I \right),\,\left( {II} \right),\,\left( {III} \right),\,\left( {IV} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Xét hai mặt phẳng \(\left( {ADF} \ri (ảnh 1)

Xét hai mặt phẳng \(\left( {ADF} \right)\) và \(\left( {BCE} \right)\) có : \(\left\{ \begin{array}{l}AD{\rm{//}}BC\\AF{\rm{//}}BE\end{array} \right.\) nên \(\left( I \right):\,\left( {ADF} \right){\rm{//}}\left( {BCE} \right)\) là đúng.

Xét hai mặt phẳng \(\left( {ADF} \right)\) và \(\left( {MOO'} \right)\) có : \(\left\{ \begin{array}{l}AD{\rm{//}}MO\\AF{\rm{//}}MO'\end{array} \right.\) nên \(\left( {II} \right):\,\left( {MOO'} \right){\rm{//}}\left( {ADF} \right)\)là đúng.

Vì \(\left( I \right):\,\left( {ADF} \right){\rm{//}}\left( {BCE} \right)\) đúng và \(\left( {II} \right):\,\left( {MOO'} \right){\rm{//}}\left( {ADF} \right)\) đúng nên theo tính chất bắc cầu ta có \(\left( {III} \right):\,\left( {MOO'} \right){\rm{//}}\left( {BCE} \right)\)đúng.

Xét mặt phẳng \(\left( {ABCD} \right)\) có \(AC \cap BD = O\) nên hai mặt phẳng \(\left( {ACE} \right)\) và \(\left( {BDF} \right)\) có điểm \(O\) chung vì vậy không song song nên \(\left( {IV} \right):\,\left( {ACE} \right){\rm{//}}\left( {BDF} \right)\) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

a) Chứng minh \(mp\left( {A{A^\prime },B{B^\prime }} \right)\)\(mp\left( {C{C^\prime },D{D^\prime }} \right)\) song song:

Ta có \(A{A^\prime }//D{D^\prime }\)\(AB//CD\) nên \(mp\left( {A{A^\prime },B{B^\prime }} \right)//mp\left( {C{C^\prime },D{D^\prime }} \right)\).

Trong mặt phẳng \((P)\), cho hình bình hành \(ABCD\). V (ảnh 1)

b) Chứng minh \({A^\prime }{B^\prime }{C^\prime }{D^\prime }\) là hình bình hành:

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{\mathop{\rm mp}\nolimits} \left( {A{A^\prime },B{B^\prime }} \right)//mp\left( {C{C^\prime },D{D^\prime }} \right)}\\{(Q) \cap mp\left( {A{A^\prime },B{B^\prime }} \right) = {A^\prime }{B^\prime }}\\{(Q) \cap mp\left( {C{C^\prime },D{D^\prime }} \right) = {C^\prime }{D^\prime }}\end{array} \Rightarrow {A^\prime }{B^\prime }//{C^\prime }{D^\prime }} \right.\).(1)

Hoàn toàn tương tự, ta chứng minh được \({A^\prime }{D^\prime }//{B^\prime }{C^\prime }\). (2)

c) Từ (1) và (2) suy ra \({A^\prime }{B^\prime }{C^\prime }{D^\prime }\) là hình bình hành.

d) Chứng minh \(O{O^\prime }//A{A^\prime }\) :

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {AC{C^\prime }{A^\prime }} \right) \cap \left( {BD{D^\prime }{B^\prime }} \right) = O{O^\prime }}\\{A{A^\prime } \subset \left( {AC{C^\prime }{A^\prime }} \right),B{B^\prime } \subset \left( {BD{D^\prime }{B^\prime }} \right)}\\{A{A^\prime }//B{B^\prime }}\end{array}} \right.\\ \Rightarrow O{O^\prime }//A{A^\prime }//B{B^\prime }{\rm{ hay }}O{O^\prime }//A{A^\prime }.\end{array}\)

Lời giải

Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm \(\Delta ABE\). Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\). Khi đó: (ảnh 1)

a) b) c) Cho hình bình hành \(ABCD\)\(ABEF\) nằm ở hai mặt phẳng khác nhau. Chứng minh rằng: \((ADF)//(BCE)\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{EF//CD(//AB)}\\{EF = CD( = AB)}\end{array} \Rightarrow EFDC} \right.\) là hình bình hành.

\( \Rightarrow FD//EC\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{AD//BC;AF//BE}\\{AD,AF \subset (ADF);AD \cap AF = A}\\{BC,BE \subset (BEC);BC \cap BE = B}\end{array} \Rightarrow (ADF)//(BCE)} \right.\)

d) Tính \(\frac{{AN}}{{NC}}\).

Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm \(\Delta ABE\). Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\). Khi đó: (ảnh 2)

Vẽ mp \((P)\) chứa \(M\)\((P)//(ADF)\) cắt \(AB,AC,CD,EF\) lần lượt tại \(I,N,K,J\).

Ta có: \(\frac{{AI}}{{BI}} = \frac{{AN}}{{NC}}(IN//BC)\)

Ta có: \(\frac{{EJ}}{{IS}} = \frac{{ME}}{{MS}} = 2(IS//JE)\)

\(BI = EJ\) (tứ giác BIJE là hình bình hành)

\(\begin{array}{l} \Rightarrow \frac{{BI}}{{IS}} = 2 \Rightarrow \frac{{BI}}{2} = \frac{{IS}}{1} = \frac{{BI + IS}}{{2 + 1}} = \frac{{BS}}{3}\\ \Rightarrow BI = \frac{2}{3}BS;IS = \frac{1}{3}BS\end{array}\)

Ta có: \(AI = AS + AI = BS + \frac{1}{3}BS = \frac{4}{3}BS \Rightarrow > \frac{{AI}}{{BI}} = \frac{{\frac{4}{3}BS}}{{\frac{2}{3}BS}} = 2 \Rightarrow \frac{{AN}}{{NC}} = 2\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Các mệnh đề sau đúng/sai.

a) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một đường thẳng \(a\) chứa \(M\) và song song với \(\left( \alpha \right).\)

b) Cho hai đường thẳng \(a\)\(b\) chéo nhau. Khi đó tồn tại duy nhất mặt phẳng \(\left( \alpha \right)\) chứa \(a\) và song song với \(b.\)

c) Cho điểm \(M\) nằm ngoài mặt phẳng \(\left( \alpha \right).\) Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa điểm \(M\) và song song với \(\left( \alpha \right).\)

d) Cho đường thẳng \(a\) và mặt phẳng \(\left( \alpha \right)\) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng \(\left( \beta \right)\) chứa \(a\) và song song với \(\left( \alpha \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[A'C'||BD\].         
B. \[A'B'||\left( {SAD} \right)\].              
C. \[A'C'||\left( {SBD} \right)\].                
D. \[\left( {A'C'D'} \right)||\left( {ABC} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP