Câu hỏi:

06/10/2025 25 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Khi cắt một chiếc bánh ga-tô hình hộp, Thuý nhận thấy vết cắt ở mặt trên và mặt dưới của bánh gợi nên hình ảnh về hai đường thẳng song song với nhau. Hỏi nhận xét của Thuý có đúng không? Vì sao?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi Thuý cắt bánh thì lưỡi dao di chuyển tạo thành một mặt phẳng cắt hai mặt trên và dưới của chiếc bánh. Vì mặt trên và mặt dưới của chiếc bánh song song với nhau nên các vết cắt (chính là giao tuyến của mặt phẳng cắt và hai mặt bánh) song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm \(\Delta ABE\). Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\). Khi đó: (ảnh 1)

a) b) c) Cho hình bình hành \(ABCD\)\(ABEF\) nằm ở hai mặt phẳng khác nhau. Chứng minh rằng: \((ADF)//(BCE)\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{EF//CD(//AB)}\\{EF = CD( = AB)}\end{array} \Rightarrow EFDC} \right.\) là hình bình hành.

\( \Rightarrow FD//EC\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{AD//BC;AF//BE}\\{AD,AF \subset (ADF);AD \cap AF = A}\\{BC,BE \subset (BEC);BC \cap BE = B}\end{array} \Rightarrow (ADF)//(BCE)} \right.\)

d) Tính \(\frac{{AN}}{{NC}}\).

Cho hình bình hành \(ABCD\) và \(ABEF\) nằm ở hai mặt phẳng khác nhau. Gọi \(M\) là trọng tâm \(\Delta ABE\). Gọi \((P)\) là mặt phẳng đi qua \(M\) và song song với mặt \((ADF)\). Lấy \(N\) là giao điểm của \((P)\) và \(AC\). Khi đó: (ảnh 2)

Vẽ mp \((P)\) chứa \(M\)\((P)//(ADF)\) cắt \(AB,AC,CD,EF\) lần lượt tại \(I,N,K,J\).

Ta có: \(\frac{{AI}}{{BI}} = \frac{{AN}}{{NC}}(IN//BC)\)

Ta có: \(\frac{{EJ}}{{IS}} = \frac{{ME}}{{MS}} = 2(IS//JE)\)

\(BI = EJ\) (tứ giác BIJE là hình bình hành)

\(\begin{array}{l} \Rightarrow \frac{{BI}}{{IS}} = 2 \Rightarrow \frac{{BI}}{2} = \frac{{IS}}{1} = \frac{{BI + IS}}{{2 + 1}} = \frac{{BS}}{3}\\ \Rightarrow BI = \frac{2}{3}BS;IS = \frac{1}{3}BS\end{array}\)

Ta có: \(AI = AS + AI = BS + \frac{1}{3}BS = \frac{4}{3}BS \Rightarrow > \frac{{AI}}{{BI}} = \frac{{\frac{4}{3}BS}}{{\frac{2}{3}BS}} = 2 \Rightarrow \frac{{AN}}{{NC}} = 2\)

Câu 2

A. Một tam giác vuông cân.                      
B. Một tam giác đều.              
C. Một hình bình hành.                                                          
D. Một tam giác cân.

Lời giải

Chọn D

Do\[ABCD\] là tứ diện đều nên tam giác \[ABI\] cân tại \[I\] cân tại \[N\] (ảnh 1)

\[\left( {ABI} \right) \cap \left( {BCD} \right) = BI\], \[\left( \alpha  \right)\] và \[\left( {BCD} \right)\] có điểm \[M\] chung. Vậy giao tuyến của \[\left( \alpha  \right)\] và \[\left( {BCD} \right)\] là đường thẳng qua \[M\] song song với \[IB\], giả sử cắt \[CD\] tại \[N\].

Lập luận tương tự ta được \[NP//AI\], \[P \in {\rm{A}}C\]; \[PM//AB\].

Do\[ABCD\] là tứ diện đều nên tam giác \[ABI\] cân tại \[I\] cân tại \[N\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {IMN} \right)\,{\rm{//}}\,\left( {SAB} \right)\).                     
B. \(\left( {IMN} \right)\,{\rm{//}}\,\left( {SAD} \right)\).              
C. \(\left( {IMN} \right)\,{\rm{//}}\,\left( {SAC} \right)\).                     
D. \(\left( {IMN} \right)\,{\rm{//}}\,\left( {SBD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {ABCD} \right)\;{\rm{//}}\;\left( {A'B'C'D'} \right)\).  
B. \(\left( {AA'D'} \right)\;{\rm{//}}\;\left( {BCC'} \right)\).              
C. \(\left( {BDD'} \right)\;{\rm{//}}\;\left( {ACC'} \right)\).                                                     
D. \(\left( {ABB'} \right)\;{\rm{//}}\;\left( {CDC'} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {DEB} \right)||\left( {A'B'F} \right)\).                     
B. \(\left( {EFG} \right)||\left( {BCD} \right)\).              
C. \[\left( {DB'C'} \right)||\left( {AEF} \right)\].                     
D. \(\left( {DEG} \right)||\left( {A'B'C} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP